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�2Take-home message

What did we do? Theoretically investigated:  
How expressive are NODEs?

What is the result? Universality of NODE + Affine transform 
for a large class of diffeomorphisms 
w.r.t. � -norm.sup

NODE-based invertible neural networks have guaranteed 
representation power for approximating diffeomorphisms.

Message

NODE = Neural Ordinary Differential Equations
[CRBD18]

Why important? • Strong (� -norm) guarantee for a 
large class of invertible maps.

sup

• cf. Previous result: Universality 
for �  w.r.t. � -norm.C0(ℝn, ℝm) Lp [LLS20]



�3Model: Neural Ordinary Differential Equations

z(0) = x, ·z(t) = f(z(t)) (t ∈ ℝ)

INNℋ-NODE := {W ∘ ψk ∘ ⋯ ∘ ψ1 | ψ1, …, ψk ∈ NODEs(ℋ), W ∈ Aff, k ∈ ℕ}

Model (composition of NODEs and affine transform)

Then, for � , consider the set of NODEs:ℋ ⊂ Lip(ℝd)
[CRBD18]NODE layers

�NODEs(ℋ) := {x ↦ z(1) | f ∈ ℋ}

NODE layer Lip(ℝd) := {f : ℝd → ℝd | f  is Lipschitz}

For each � , we define an invertible map �  
via an initial value problem

f ∈ Lip(ℝd) x ↦ z(1)
[DJ76]

{z(0) = x,
·z(t) = f(z(t)) (t ∈ ℝ) .

x z(1)
Solve for � :z(t)



�4Main result
Definition (Universality) [C89,HSW89]

� -universal approximator: the model 
can approximate any target function 
w.r.t. � -norm on a compact set.

sup

sup

f

g

K

< ε

General
�𝒟2

...and more
�{C2-diffeo on ℝd}�  := � -diffeo of the form �  

                (�  : open � -diffeo to � )
𝒟2 {C2 f : Uf → f(Uf )}

Uf ⊂ ℝd C2 ℝd

Definition (Approximation target � )𝒟2

Fairly large set of smooth invertible maps.

Theorem

If �  is a � -universal approximator for � , 
then �  is a � -universal approximator for � .

ℋ sup Lip(ℝd)
INNℋ-NODE sup 𝒟2

Ex. for � : multi-layer perceptron [LBH15], Lipschitz Networks [ALG19].ℋ

d ≥ 2



�5Take-home message

What did we do? Theoretically investigated:  
How expressive are NODEs?

What is the result? Universality of NODE + Affine transform 
for a large class of diffeomorphisms 
w.r.t. � -norm.sup

NODE-based invertible neural networks have guaranteed 
representation power for approximating diffeomorphisms.

Message

NODE = Neural Ordinary Differential Equations
[CRBD18]

Why important? • Stronger (� -norm) guarantee for 
a smaller but large class of maps, 

• cf. previous result: Universality for 
�  w.r.t. � -norm.

sup

C0(ℝn, ℝm) Lp [LLS20]
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