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Today’s content 1/34

» Exploit causal models for transfer learning:

Few-shot domain adaptation by causal mechanism transfer.

arXiv:2002.03497. Teshima, T., Sato, I., and Sugiyama, M.,
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1. Part I: Modeling Causality (10min)



Part | 4/34

Our research is built on models of causality.

Part | briefly introduce the topic of causality starting
from its motivation.
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Figure 1. Correlation between Countries’ Annual Per Capita Chocelate Consumption and the Number of Nobel
Laureates per 10 Million Population.

Figure: [1]



Motivation: Correlation vs. causation 6/34

o @ says: Let's eat more chocolatel!
* We say: Wait! It's just correlation. Not causation!

* What's causality?

Figure: [1]



Motivation: Correlation vs. causation 7/34

o 7 says: Let's eat more chocolate!
* We say: Wait! It's just correlation. Not causation!

ABRFUARE

(Gop™y

What's causallty7 ii

» The difference of causation vs.
association (correlation) appears
when we intervene in a system.

Figure: [1]
o Intervention = Manipulate a random variable (e.g.,

fixing its value, etc.)
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x = randn()
y =x+ 1+ sqrt(3)*randn()

y =1+ 2*randn()
X = (y-1)/4 + sqrt(3)*randn()/2

z = randn()
y =z + 1+ sqrt(3)*randn()
X=z

» Different ways to generate the same joint distribution.

Figure: [2]
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z = randn()
x = randn() y =1+ 2*randn() x=3
x=3 x=3 X=z
y =x+ 1+ sqrt(3)*randn() x = (y-1)/4 + sqrt(3)*randn()/2 x=3
x=3 x=3 y =z + 1+ sqrt(3)*randn()
x=3
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» Different behavior under intervention do(X = 3)
Figure: [2]
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Structural Equation Models (SEMs)
a.k.a. Structural Causal Models (SCMs) 3

An SEM is a tuple (¢,G,F), which defines a
distribution over random variables {Z;}2 .
For a more formal definition, see [4].

Directed acyclic graph | Functions F = {fa}7,
(DAG) G whose vertex
set is {Z;}2, Za = fi(Zpag(ay> Sa)

Distribution ¢ of inde-
pendent random vari-
ables {S;}2

Zy =
Zy =
Z3 = f3(Z1,8s),

Zy = fa(Za, Z3,5,).

S ~ q(S1,82,S3,54)

= H qa(Sa)
d=1




Modeling causality: Intervention 11/34

Perfect interventions 3 (o7, — ()

Perfect intervention enforces Z; to attain value ¢;.
This changes the SCM (¢, G, F) into (¢,G', F') w/

Ca ifdel

Ja(Zpa d:Sd):{ .
! o fa(Zpag(ay,Sa) fdgl

In the graph, all edges incoming to Z; are removed.

Zy = f1(S1),
Zy = fo(Z1,8),
Z3 = (3,

Zy = fa(Zy,Z3,54).



SEM: Formal definition g 12/34

Definition ([Wright, 1921, |Pearl, 2000, |Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = (X, &, f,Pg) with:
@ a product of standard measurable spaces X = 1_[,.6I X
(domains of the endogenous variables)

@ a product of standard measurable spaces € = Hjej &
(domains of the exogenous variables)

© a measurable mapping f : X x € - X
(the causal mechanism)

@ a product probability measure Pg = Hjej Pg on €
(the exogenous distribution)

Definition
A pair of random variables (X, E) is a solution of SCM M if
PE = Pg¢ and the structural equations X = (X, E) hold a.s..

| \
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Definition

The components of the causal mechanism usually do not depend on al/
variables: for i € Z,

X,- = f,—(xpaiz, epaj)

where f; only depends on pa,-I C T (the endogenous parents of i) and
pa;T C J (the exogenous parents of 7).

Definition
The augmented graph G(M) of SCM M is a directed graph with nodes
ZUJT and an edge k — i iff k € palUpay is a parent of i € 7.

| \

Definition

The graph G(M) of SCM M is a DMG with nodes Z, directed edges
k—iiff ke pa%, and bidirected edges k <> i iff pa;-7 N pa‘kj £ 0.
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Definition

An SCM M is said to be uniquely solvable w.r.t. @ C T if there exists a
measurable mapping go : X (pa,, (0)\0)nz X Epay(0)ng — Ko such that
for Pg-almost every e for all x € X:

X0 = 8o (X(pay (ON\ONT: €pay (0)n7) =  Xo = fo(x,e).

(Loosely speaking: if the structural equations for O provide a unique
solution for xo in terms of the other variables).
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Definition

We call an SCM M simple if it is uniquely solvable with respect to any
subset O C 7.

If G(M) is acyclic, M is simple.

@ The class of simple SCMs extends the class of acyclic SCMs by
allowing for (weak) cyclic causal relations, while preserving most of
the simplicity and convenience of acyclic SCMs.

@ The theory for non-simple SCMs is considerably more involved
[Bongers et al., 2018].

e Simple SCMs induce modular SCMs (mSCMs)
[Forré and Mooij, 2017].
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Causal inference requires more information (additional
assumptions) than joint distributions of data.

One of the causal models: SEMs (structural equation
models).

Causal discovery (estimation of SEMs/GCMs) has
seen continuous progress in the past decades.
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2. Part Il: Our Research (15min)
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» Data is scarce resource. We want to exploit as much
info as possible.

» Use data from related but different prob.
distributions = Domain adaptation (DA)
-
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Motivation: Transfer assumption (TA) 19,34

» Of course, we need some form of an assumption
(transfer assumption; TA) to relate pyew and pia.
What commonality to exploit?

» (Without an assumption, DA cannot be justified)
-
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Motivation: ldea of our TA 20/34

Our TA: Causal mechanism is identical b/w domains.

Humans care about causality (partially) because, once
discovered, it applies to different systems.

Motivating example: Regional disease prediction

Predict disease risk from medical records. s
Common pathological mechanism across regions.

Data distributions may vary for different lifestyles.

Figure: https://slideplayer.com/slide/15283414/
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In this work, we focus on regression under. ..
Homogeneous (i.e., all domains in the same space)
X XYCRP xR
Multi-source (i.e., we have multiple source domains)
Di = {(Thi, Yi) }iky S Psreky (k=1,..., K) (ng is large)
Few-shot (i.e., labeled but few target domain data)

iy ..

{(mtar,hytar,i)}il ~ Ptar
setting.

(nar is small)

Goal: accurate predictor for the target distribution

Find g : RP~! - R s.t. R(g) :=E..l(g, X,Y) is minimal.
¢: loss function



Problem setup: Formulation 2/3

WIC distribution
S~q&d”)

d=1
+

@Mechanism

U

y Observed joint distribution
o® X
‘_ (¥)~P
X

Relation to structural
causal models: Solve
SEMs by imputation.

Nonlinear independent

component analysis
(NLICA) model.

ICs S = (S@)4e1.p are
sampled from q.

Invertible f transforms
S into (X,Y) = f(9).

Each pair (f,q) defines
a joint distribution p.

22/34



Problem setup: Formulation 3/3  23/34

q1 qo q3 - - {Tar «—ICdistributions are
T oo . nonparametrically different

[ | | [ | | [ | . f (mechanism) is shared
| | across domains

o I FT (Observed)

% ‘ ‘ & “eo,  t—Apparently different yet

' \X ' il / il — related joint distributions

| Extract f | k » Fit target hypothesis §

Assumption of common generative mechanism.
Capture common generative mechanism = Enable

DA among seemingly very different distributions
without parametric assumptions.



Proposed method: Algorithm 24/34

L] %%
%,
f « ICA(Dy,...,Dg) NLICA on source domains?
Stari “ I (earis Years) Extract IC in target domain
{5;},5 tar <— Shuffle({5iar;}i)  Shuffle IC of target domain
{xj,yj}.tar — f({gj}j) Get augmented target data?

Raug( ) = D > "'arﬁ(g,a‘:j,gjj) Augmented emp. risk

Gaug € argming g Rag(g)  Train on the augmented data

IMulti-source required for nonlinear ICA with generalized contrastive learning.

%Inverse is possible if we model f by invertible neural networks.
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* Understand the statistical properties of the proposed
risk estimator

tar

= Zﬁ 9.7, 75)

ntar j=1

aug
and that of its minimizer g,,,:

R(Qaug) - R(g*).



Theoretical analysis: Research questionszg /34

Theoretical Q&A:
What does it mean to exploit independence?

When f = f (ideal case), R..(g) is the uniformly
minimum variance unbiased estimator of the target
risk. Essentially, it should help in terms of variance.

Estimating f induces error. What are the trade-offs?
[ # f = ® Mitigate overfitting. © Introduce bias.




Theoretical analysis: Strategy 27 /34

* Interpret R,.(g) as the von-Mises statistic (process).
(When f = f, it is also the generalized U-statistic.)
o Define (sy,...,sp) = (g, f(s", ..., sP)) . Then,

QP = /E(sl,--‘ ,$p)G(s1) -+ G(sp)dsy - --dsp.



Theoretical analysis: If j =f 28/34

What does it mean to exploit independence?

Q : set of independent continuous distributions over R” .

Theorem: minimum variance property

Assume f = f. Then R,.(g) is the (unique) UMVUE
(uniformly minimum variance unbiased estimator) of
R(g) on Q. That is,

YR(g) :unbiased, Yq € Q, Var(R,u(g)) < Var(R(g))
Special case: Var(Rau(g)) < Var(Rerm(g))

Why? (Details are skipped)
Reinterpret R,..(g) as generalized U-statistic g of R(g).



Generalized U-Statistic 29/34

Lemma (Generalized U-statistic is UMVUE 7))

Consider a regular statistical functional with kernel
PR x ..o x R — R:
ng>
g=l1

(1) (L)
Ty, xy,,

Its generalized U-statistic given samples {x }Z . g s

E1,....k 1 L L
GUEnl1 ..... TLI;)) H Z"/} <( (1)7” l'((l))> .y ( ((L)),.. (E((L))>>
L All

(k1,.-,kL)
Then, GU(m’_”nL)
estimator of § on O.

Y Is the uniformly minimum variance unbiased
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Theoretical analysis: If f = f 30/34

(2. What happens when f;é f?

Theorem: generalization error bound 3

Under appropriate assumptions, with probability at least 1 — (6 + ¢),

- o II-[[yy2.2: (1,1)-Sobolev norm
R(gaug) — R(g")

[log2/6
< C’Z HfJ fi H —|—4D9‘{ (G) +2DBy % +Higher order terms.

Estimation error

Approximation error

3This also provides a bound on the negative transfer.
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Theorem: generalization error bound

R(gaug) - R(g*)

< CZH]Z fJH +4D9‘i )—|—2DBm/%+Higher order terms.

Estimation error

Approximation error

© Effective Rademacher complexity:

> oy, s [0(3:, S5, ... Sp)]

gegzl

R(G) = *E sEo lsup

J _ 1) (D)

> U(51,...,8D) = B Yoncey, Uy, f(s w12 Sa(p))):

» {oi}7_,: Independent sign variables, E4: Expectation w.r.t. {5;};7},
Gp: degree-D symmetric group.
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REZED) RV HEER/IMEICED < ERM DRLER
Z=f#HT% 9 % (estimation error bound).
[MEHE%E T 2R (& V-EETE/U- R E20ER
A #%XH L THT< % Rademacher complexity %@ U
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Motivation: Causal modeling

Causality is about the data generating process.

Statistical machine learning: knowing the joint
distribution solves most problems.

Causal inference (e.g., make predictions under
intervention): Joint dist. + assumptions on the data
generation process are required.

Data may have intrinsic causal structure (cf. the
chocolate-Nobel example). The structure can be
useful for ML...?



Modeling causality: Two frameworks

There are mainly two frameworks. (s

“Rubin’s model”: Potential outcome framework

Model random variables before and after intervention,
e-g-, ]E[NObelAdChocolate - NObelNoAd]

“Pearl’s model”: Structural causal models /
Causal Bayesian networks (today)

Model data generation process by functional relations.

These are related 3, 4, 9. Both models have some form
of causal assumptions.



Motivation: Existing TAs

Transfer Assumption (TA) AD NP Suited app. example

(1) Parametric dist. family [10] v - Remote sensing [11].
or shift [11-14].

(2) Invariant dist [15] p(Y|T (X)) - v BCl [16]

Covariate shift 7 = Id[17]
Transfer component T [18]
Feature selection T [19, 20]
TarS [11, 21] p(X|Y)
R-vine copulas [22].

(3) Discrepancy [23-28] / IPM [29] - v' Computer vision [29]

+ ideal joint hypothesis [25]
(4) Param-transfer [30] v v Computer vision [30, 31]
(Ours) Mechanism v’ v Medical records [5]

® AD: adaptation among Apparently Different distributions is accommodated.

® NP: Non-Parametrically flexible.



Motivation: Existing TAs

Transfer Assumption (TA) AD NP Suited app. example

(1) Parametric dist. family [10] v - Remote sensing [11].
or shift [11-14].

(2) Invariant dist [15] p(Y|T (X)) - v BCl [16]

Covariate shift 7 = Id[17]

Trancfer camnonent T (18]

Different TAs have different (targeted) application
fields.
Compared to previously proposed TAs
(approach-wise). . .

Adaptation among apparently different distributions is

accommodated.
Does not rely on parametric assumptions.



Modeling causality: GCMs

» Graph G has rich info. to enable causal inference
(e.g., p(Z4y|do(Z5 = 3))).

* Knowing the whole (¢,G, F) is not always necessary.

» Bayesian network of the induced distribution of

D

{Zd}dzl'

» We can read out conditional independence relations among
variables.

A P
1 fa 'GDP\,



Modeling causality: Estimation g

Approach Example Ref.
(1) Constraint-/Score-based PC, FCI, GES
(2) “Functional constraint”-based ANM, PNL 32]
(3) “ICA"-based LINGAM (32, 33]
Others JCI [34-36]

Estimate equivalence class of G. Generic but cannot
distinguish 7, < Z, vs. Z, — Z,.

Estimate G by restricting function class of F.
Non-Gaussianity /auxiliary information.

* This is only an incomplete list.



Understanding the assumption

» Simple example of such a data generation process:
> Regression with (heteroskedastic) noise (z # 0 a.s.)

. X =5 - S =X
| i Y =h(X)+ XS, Sy = (Y — h(X)),

* Even if f is shared, py.x) (y|z) and pu..(y|z) can be very

different when gy and ¢, are different.

ko) = [ plulslptslonds = | plyloptels) % s
Invariant e

Variant



Nonlinear ICA (1/2)

Problem: Independent Component Analysis

Assume observed r.v. X € R” is an unknown
transformation f (smooth and invertible) of the
(dim-wise indep.) latent r.v. S € RP as X = f(9).
Goal: retrieve the inverse f~! and the independent
components {S@1}2  based on observed X.

Linear f = well-established.
Nonlinear f = impossible in one-sample i.i.d. setting

[37].



Nonlinear ICA (2/2)

Nonlinear ICA has been realized (33, 35-40).
Exploit auxiliary info (e.g. temporal dependence)*.

Generalized contrastive learning 33 for NLICA

Data has auxiliary variable (u): {(Xi,u)}2,

Latent prior is conditioned on u: p(s|u) =[], ¢ (s |u)
Train binary classifier r(z,u) = o(32 ba(h(z)4,u)) to
distinguish (z;,u;) : +1 vs. (@, @) : —1. o sigmoid
Then, given sufficient theoretical conditions,

h: X — RP consistently estimates f (n — o).

*In our case, we use the source domain ID (k) as the auxiliary information.
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