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Overview 1



1⃝Ceiling effect（Important!） 2

Ceiling Effect

Situation: measurement tool has an upper bound [1].

Exceeding values are observed after clipping to the

upper bound.

• Ex. 5-scale response • Too many “5” ⇒
question failed to

capture true preferences.
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Ceiling effect in machine learning data 3
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• Benchmark data of recommendation systems.

• Right-truncated shape is typical for ceiling effect



How can we investigate the

true values of data that is

prone to ceiling effects?
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Overview 5



2⃝Matrix completion 6

• A technique to recover a matrix from deficits e.g.

missing [3].

• Goal: fill in the blanks

• Missing, noise, quantization, etc. For each deficit,

methods are developed.



2⃝Application of matrix completion 7

• Example application: movie recommendation system
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2⃝How matrix completion works 8

• There are conditions for MC to be possible.

• Low-rank and well-behaved matrix ⇒ recoverable [3].

The principle of low-rank completion

• Low-rank · · · each entry is an inner product of

row-/column-vectors.

• How to fill in: estimate feature vectors → compute

inner products



The principle of low-rank

matrix completion: recover

matrices from missing etc.
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Completing low-rank matrix from its
clipped observations 11
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⇒

8 13 6 9 4
2 6 7 16 12
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0 3 6 15 12
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Underlying matrix

Problem (Clipped Matrix Completion; CMC)

Accurately recover the underlying matrix from a

random subset of its clipped observations and the

known clipping threshold.



List of results and contributions 12

8 13 6 9 4
2 6 7 16 12
4 6 2 2 0
0 3 6 15 12
4 7 4 7 4

True values

(unknown)

Obs.

⇒
8 10 6 9 4
2 6 7 10 10
4 6 2 2 0
0 3 6 10 10

7 4 7 4

Observed data

(clip @ 10)

Rec.

⇒
8.0 13.0 6.0 9.0 4.0
2.0 6.0 7.0 15.9 11.9
4.0 6.0 2.0 2.0 0.0
0.0 3.0 6.0 14.9 11.9
4.0 7.0 4.0 7.0 4.0

After

completion

1. Proposed problem setting→ Clipped matrix completion.

2. Recovery possible?→ Exact recovery possible under conditions.

3. Recovery method?→Minimize squared hinge loss +

regularization term

4. Experimentally?→ Resilience to ceiling effect may improve

recommendation systems!

(The proposed regularization term has a theoretical guarantee)



List of technical details 13

1. Main theorem: when is recovery possible?

2. Proposed method: how to do the recovery?

3. Theoretical guarantee of the proposed method

(omitted)

4. Experimental evaluation



Technical detail 1⃝: when is recovery
possible? 14

• Motivation for theory: not all clipped matrices can be

completed.

▶ There are evident cases where recovery is impossible.
▶ There are cases where no treatment for clipping is required.

• Main theorem: a sufficient condition for the recovery to be

possible.

→ at least, there are cases where recovery is feasible (even with

non-negligible clipping).



Technical detail 1⃝Main theorem 15

Assumptions (informal)

1. The effect of clipping (definition is involved) is small.

2. True matrix M is low-rank.

3. M is “Incoherent”(a small subset of observation is

sufficient for estimating the entire matrix)

4. The elements are observed independently with

high-enough probability p.

Theorem (Exact recovery for CMC; informal)

With high probability, with a certain algorithm

(trace-norm minimization), the true matrix can be

recovered exactly.

(”high-probability” here is for the probability of

element-wise observation/missing)



Technical detail 2⃝: how to recover? 16

• Ordinary MC [5] : square loss

arg min
X

1

2

∑
ij : obs

(Obsij −Xij)
2 +R(X)

• On the clipped entries, C is wrongly recovered.

• CMC (proposed): square hinge loss

arg min
X

1

2

∑
ij : non-clip. obs.

(Obsij −Xij)
2

+
1

2

∑
ij : clipped obs.

max(0,Obsij −Xij)
2

+R(X)



Design of regularization term: induce
low-rank solution

17

1. DTr-CMC: Double trace-norm regularization
(proposed)
▶ Effect: induce low-rankness in both X and Clip(X)
▶ Theoretical guarantee is also given (details omitted)

2. Tr-CMC: trace-norm regularization [5]

▶ Effect: induce low-rank solution

3. Fro-CMC: Frobenius norm regularization [4]

▶ Effect: induce low-rank solution



Details of the regularization terms 18

1. DTr-CMC: Double trace-norm regularization
R(X) = λ1∥X∥tr + λ2∥Clip(X)∥tr Clip = min(·, C)

▶ Effect: induce low-rankness in both X and Clip(X)
▶ Optimization: (approximate) subgradient descent [2]

▶ Theoretical guarantee is also given (details omitted)

2. Tr-CMC: trace-norm regularization [5] R(X) := λ∥X∥tr

∥X∥tr =
∑min(n1,n2)

l=1 σl (σl: l-th singular value)
▶ Effect: induce low-rank solution
▶ Optimization: accelerated gradient descent [5]

3. Fro-CMC: Frobenius norm regularization [4]

R(P,Q) := λ1∥P∥2F + λ2∥Q∥2F X = PQ⊤

▶ Effect: induce low-rank solution
▶ Optimization: (approximate) alternating least squares [4]



Technical details 3⃝: experiments 19

1. Experiment with synthetic data
▶ Evaluate the recovery result under a controlled situation

(where true value is known)

2. Experiment with real-world data
▶ The true values are unknown ⇒ evaluation of recovery is

impossible.

(The true values before clipping in real-world data is unknown)
▶ Device for evaluation: evaluate a binary (two-class)

classification task to classify entries into “the true value is

above threshold or not.”



Experiment 1/3 Experiment with
synthetic data

20
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• Solid: proposed method, dotted: baseline methods.

• Vary clipping threshold → eval. test recovery error.

• Proposed method (solid) is able to estimate the true matrix with

small error of order 10−2 even when there is 70% clipping.



Experiment 2/3 Experiment with
real-world data (1)

21

f1 value DTr-CMC Fro-CMC Fro-MC Tr-CMC Tr-MC (baseline)

Film Trust 0.47 0.35 0.27 0.36 0.22 0.41

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

Movielens 0.39 0.41 0.21 0.40 0.12 0.35

100K (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

• Learning after artificially clipping real data (★ 5→★
4)

• Classify true ratings into “★ 5 ≥” and “≤ ★ 4”

• Proposed method estimates the true value better

• (Baseline: a classifier which unconditionally outputs +1)



Experiment 3/3 Experiment with
real-world data (2)

22

f1 value DTr-CMC Fro-CMC Fro-MC Tr-CMC Tr-MC (baseline)

Film Trust 0.46 0.40 0.35 0.39 0.35 0.41

(0.01) (0.01) (0.01) (0.00) (0.01) (0.00)

Movielens 0.38 0.41 0.38 0.40 0.38 0.35

100K (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

• Learning from real data (without artificial clipping)

(★ 1～★ 5)

• Classify true ratings into “★ 5 ≥” and “≤ ★ 4”

• Robustness to ceiling effect improves the detection

power of high-rating entries.

• (Baseline: a classifier which unconditionally outputs +1)



Summary 23

• Problem setting? → Recover matrix from ceiling effects

• Recovery possible? → Exact recovery possible under conditions

• How to recover? → Minimize square hinge loss + regularization

term

• Experimentally? → Resilience to ceiling effect may improve

recommendation systems!
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(unknown)

Obs.

⇒
8 10 6 9 4
2 6 7 10 10
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0 3 6 10 10
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Observed data

(clip @ 10)

Rec.

⇒
8.0 13.0 6.0 9.0 4.0
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After
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Coherence 25

• Let M = UΣV⊤ (Singular value decomposition).

• Define coherence by µ0 := max
{n1

r
µU(M),

n2
r
µV(M)

}
▶ Here, µU(M) := maxi∈[n1] ∥Ui,·∥2 ,

µV(M) := maxj∈[n2] ∥Vj,·∥2 , r = rank(M) .

• Joint coherence is defined by µ1 :=
√

n1n2
r

∥UV⊤∥∞

• M is incoherent if both µ0 and µ1 are small.



Information deficit 26

• B := {(i, j) : Mij < C}
•

T := span
(
{uky

⊤ : k ∈ [r],y ∈ Rn2} ∪ {xv⊤
k : k ∈ [r],x ∈ Rn1}

)
• (P∗(Z))ij := 1{Mij < C}Zij + 1{Mij = C}(Zij)+

• ρF := supZ∈T\{O}:∥Z∥F≤∥UV⊤∥F
∥PTP∗(Z)−Z∥F

∥Z∥F

• ρ∞ := supZ∈T\{O}:∥Z∥∞≤∥UV⊤∥∞
∥PTP∗(Z)−Z∥∞

∥Z∥∞

• ρop :=
√
rµ1

(
sup Z∈T\{O}:

∥Z∥op≤
√
n1n2∥UV⊤∥op

∥P∗(Z)−Z∥op
∥Z∥op

)
• νB := ∥PTPBPT − PT∥op



Can we account for floor effect in
addition to ceiling effect? 27

• Yes, the result is extendable to floor effect (cf. the

paper).

• Element-wise thresholds are also allowed.



How to determine if recovery is possible 28

• The assumptions can be checked only after seeing the

true matrix.
• However, there are some intuitions what kind of
matrix is possible to recover.
▶ Low-rank = consists of a small number of components
▶ A few (column-/row-wise) common factors almost determine

the matrix entries.
▶ In other words, there are similar rows/columns.
▶ The space spanned by the singular vectors of M is not aligned

with the indicator-matrices of the indices which are to be
clipped.
• Roughly speaking, rank-one matrices of SVD (the components of M)

have support all over the indices (if there are sparse components which

may have large values on clipped indices, the recovery is impossible).



How to determine hyper-parameters? 29

• No theoretically justified method for hyper-parameter
selection in recovery problems.
▶ In synthetic data experiment, we selected the parameter with

the smallest difference between the data and the clipped

version of the estimated matrix.

• In the real data experiment, the final performance can
be computed. Therefore, we used the one with the
best performance on a held-out validation indices.
▶ Similarly, in recommendation systems, the final performance

measure is likely available for hyper-parameter selection.



Future work for clipped matrix
completion 30

• Characterize necessary condition for recovery.

• Develop algorithms to perform artificial clipping to

disable a recovery by arbitrary method.



Trace-norm minimization 31

Trace-norm minimization is the algorithm defined as

below.

arg min
X

∥X∥tr s.t.

PΩ\C(X) = PΩ\C(M
c
Ω),

PC(M
c
Ω) ≤ PC(X),

Here, Ω := {(i, j) : observed} and C := {(i, j) ∈ Ω : M c
ij = C} .



Details of the real-world data
experiment 32

• precision : Among those predicted “yes,” the fraction

of true “yes.” (ratio of precise predictions)

• recall : Among those with true “yes,” the fraction of

those predicted “yes.” (ratio of correctly recalled true

“yes”)

• f1 =
2·precision·recall
precision+recall

• f1 was used because in this binary classification, the

challenge is to extrapolate to a large value from

observed small values. Therefore, recall is considered

as the difficult part.
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