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Motivation and Problem Setting



Ceiling Effect 1

Ceiling effect
Measurement limitation that observations are clipped

at a threshold at the time of observation.

e Ex. Questionnaire o Too many people answer
with “5” (max value).

e = questionnaire may
not be measuring the
domain correctly.

e There may exist some
more variation within

“5".




Ceiling Effect in ML Benchmark 2
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Figure 1: Histograms of benchmark recommendation systems data.

e Right-truncated histogram - - - typical for variable
under ceiling effects.



Matrix Completion (MC)

Recover matrix from missing, noise, etc.

5




MC: example application

e Movie recommendation
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MC: Why would it ever work?

Assume the matrix has a low rank.

Principle of low-rank completion
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Estimate the latent vectors, then one can impute

values.




MC: The algorithm

We want to do
Rank minimization

Mminy cgny xny rank(X) s.t. (X complies with observation)

However, rank minimization is intractable. Instead:
Trace-norm minimization

miny cgnixng || X||x s.t. (X complies with observation)

e Rank is count ), 1{o} > 0}, Trace-norm is sum
21 Ok-

e By [2], trace-norm minimization was given a
guarantee that “M completely recovers M."



Our Problem Setting: Clipped Matrix Completion



Problem of Clipped Matrix Completion ;

e M € R™*"™: the ground-truth matrix.

e (' € R: the clipping threshold.

e Clip(+) := min{C,-}: the clipping operator
(element-wise).

o MF° := Clip(M): full clipped matrix.

o (2: the random set of observed indices (details later).

Problem (Clipped matrix completion (CMC))
Accurately recover M from Mg, := { M.} jyeq and C.



lHlustration of CMC 8
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Figure 2: The true low-rank matrix M has a distinct structure of
large values. However, the observed data Mg, is clipped at a
predefined threshold C' = 10. The goal of CMC is to restore M
from the value of C' and ME,. The restored matrix M is an actual
result of applying a proposed method (Fro-CMC).



Trace-norm minimization for CMC 9

Trace-norm minimization for CMC

- Poye(X) = P ().
Xl s.t. c
M e )?é%nrlnxlilz [X[[er s.t {PC(M ) < Pe(X). (1)

e Research question: can we prove M =M (w.h.p.)?



Rough statement of the main theorem

Rough statement of the theorem
Assume

e M has nice properties (small information loss by
clipping, incoherent, low-rank)

e observations are independent with probability p.
e p is large enough

Then, M = M with high probability.

® CMC is feasible under a sufficient condition!



Coffee break

11



Quantities required for the statement



Quantities required for the statement

We need to define
e Coherence of M

e [nformation loss of M



Quantity 1: Coherence

Definition (Leverage scores [3])

Let X € R™*" have a skinny singular value
decomposition X = UXV . We define
po(X) = e 103,117, 1¥(X) := max [|V;,||?,
1€[ny JjE€[n2]

where U, (V;.) is the i-th (resp. j-th) row of U
(resp. \7)

e These are used to define the coherence of M.
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Quantity 1: Coherence (cont.)

Definition (Coherence and joint coherence [3])
Now the coherence of M is defined by

n T
o = max {qu(M), qu(M)} :

In addition, we define the following joint coherence:

ning
p = IOV |oc-

r

14



What does coherence mean?

e Note
10| = Z<U o)’
= HZU (U, el
= HUUTeiIIQ
= [Py (e,
where U := Span(uy, ..., u,).

e Therefore, a small coherence implies that there is no
element in U that is “aligned” with e;.

e In other words, no element in U are too sparse.

15



What does coherence mean? (cont.) 14

o As a result, the components u;v, that M is composed of
(as M = UXV") cannot be sparse.

e The condition that coherence is small excludes the
possibility that M is “spiky” .
e The condition of M being low-rank is not enough to
guarantee recovery.
e e.g., a matrix with only the 1, 1-entry being one and all
others being zeros is also rank-one.
o Incoherence condition (coherence being small) excludes
such a possibility.



What does coherence mean? (cont.) ;7

e Spiky matrix is possible when there is a sparse
component uzv; .
o Sparsity of u;v, means that there is a sparse uy or
Vi -
o Let's say uy is sparse.
e Then, considering the normalization property of U
(column vectors are normalized to norm-one), there must
be a gathered mass in some dimension ¢ of wuy.



Quantity 2: The information subspace

We will define the information subspace T" of M.
T is important because. ..

1. MeT.
2. T is used for explicit expression of J||M||;.

Let M=UXV'. Then UV' € T and
M|y ={W+UV' : W e T+, [|[W|,, < 1}
UV' eT.

The feasibility of recovery depends upon the amount
of information we have about 7.

18



Quantity 2: The information subspace
(cont.) 19

Definition (The information subspace of M [2])

e M = UXV': skinny singular value decomposition
(SVD) (U e Rm*", 3 € R™" and V € R"2%7).

e Define the information subspace of M by
T :=span({ury' : k € [r],y e R} U {zv] : k € [r],x € R™})

o where uy, vy are the k-th column of U and V (resp.).

o Pr,Pri: the projections onto 7" and T, resp.



(Key) quantity 3: Information loss

Using T, we capture the information loss.
The loss are measured in three different norms:
|- 1le - llop, @and ] - [Jts

To express the factor of clipping, we define an

F

element-wise transformation P*.
P* describes the amount of information left after
clipping

20



(Key) quantity 3: Information loss (cont.),;

e In the theorem of exact recovery guarantee, we will
assume: information loss is small and enough
information is left by P*.



(Key) quantity 3: Information loss (cont.),,

Definition (The information loss)

_ |PrP*(Z) — Z||r
PF = sup :
ZeT\{O}:|Z|lr<UVT ¢ 1 Z||r
_ |PrP*(Z) — Z|| o
o t= sup ,
ZeT\{O}:[|Zl| < UV T || 12| 0o
P(Z) — Z|,
P sup |P*(Z) — Zl|op 7
ZeT\{O}: 1Z]|op
HZHOPS\/WQTWHUVTHOI)

Zij if Mij < C’7
(P*(Z))Zj = max{Zij,O} if Mij = 07
0

otherwise.



(Key) quantity 4: The importance of B ,3

e Another quantity vg to measure the information loss
is required.

e If this quantity is small, enough information of T" may
be left in non-clipped entries.

Definition (The importance of clipped entries)
Define

v = ||PrPsPr — Prllop,

where B := {(Z,]) : Mij < C}



Assumption on the observation scheme ,,

Assumption (Assumption on the observation
scheme)

e pe|0,1], kg := (logQ(Qﬂ\/W)], and
g:=1—(1-p)'k.
e Foreachk =1,...,k,
e Q) C [n] X [ng]: a random set of matrix indices such that
o sampled according to P((i,7) € Qx) = ¢
o {(i,7) € Qu} are all independent.

e Then, ) was generated by ) = UZO:1 Q.

The need for Assumption 1 is technical [3].



The theorem 25

Theorem (Exact recovery guarantee for CMC)

Assume pp < %,pop < i,poo 1 , VB < =, and
Assumption 1 for some p € |0, 1] For SImpIICIty of the
statement, assume ny,no > 2 and p > > —— f
additionally,

p > min {1, ¢, max(p1?, po)r f(n1,m2) }

is satisfied, then. . .



The theorem (cont.) 26

Theorem (Exact recovery guarantee for CMC)

. the solution of Eq. (1) is unique and equal to M
with probability at least 1 — &, where

. i { 24 8
= X 5 }
’ (1/2 = pp)*" (1/4 = pop)?

8 8
(1/2 = po)?’ (1/2 — vp)? }’
o ((”1 + ”2)(10g(n1n2))2> 7

f(nb n2) NN

;=0 (—log(”l’””) (m + 1)

nq +n2




Coffee break
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Preliminary for the Proof



Linear algebra and functional analysis g

e Matrix inner product: (X,Y) = >, X;;Vi;.
e Matrix norms:

o [X[r = (X, X)

o | Xt := D, 0k (ok: singular values)

o |IXllop :== SUPy: ||v||=1 [ X



Linear algebra and functional analysis

e || |ltr and || - ||op are dual.
o (X, Y)| < [IX]lopl[Ylex
o Let S C R™*"2: subspace. For each Y € S, there
exists X € S such that
o [[Xllop=1
o (X,Y) = [ X[lopl Y]t
e X =UXV"': (skinny) SVD. Then,
e UV' eT.
o IX[lw = (W +UVT W e T [[W|op < 1)
(subgradients are (1) UV on T (2) small norm on 7).



Notation

o wyj = 1(i,7) € O} wy) = 1{(i,]) € U}
o Rgi= 1Py RE = LPo, Re = LPe, and Ry, := 1Py,
¢ Note: PQ\C,PC,PQ,RQ,RS% are all self-adjoint.
o {e:}i2,{f;};2: The standard bases of R™ and R"
(resp.).
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Proof Part 0: Proof Strategy



Detailed Form of the Theorem 31

Theorem 8 is a simplified version of the following.

Theorem

Assume pp < %, Doy < }l, Poo < 5, and vp < 5, and
assume the independent and un/form samp//ng scheme
as in Assumption 1. If for some

p > max{1,1/(4log(nins)), 1 + (log2/log(nins))},
p> min{Lmax{nllm,pmln,pﬁﬁi,pﬁﬁf,piﬁm,pﬁ?ﬁ“}} (2)

where. . .



Detailed Form of the Theorem (cont.) 3,

Theorem
- 8kopofr (n1 + na) log(nlng)’
(172 = pr)? niny
opl _ _ 8kof  log(nmi +ny)
mne 3(1/4 — pop)? max(ng, ng)’
P2 8koBrui? max(ny,ns)log(ng + ny)
m T 3(1/4 — pop)? ning ’
PP = 8kopors  (n1 + ng)log(ning)
T 3(1/2 = poo)? nino ’
wain ___8Brio_ (n + o) log(nina)
me3(1/2 — vp)? ning ’

is satisfied, then. . .



Detailed Form of the Theorem (cont.) 33

Theorem

. the minimizer of Eq. (1) is unique and equal to M
with probability at least 1 — ko(ei (nins) " +
2(nn2) P 4 (ng 4+ n2)'P) — 2(nyny) 7.



Road map 34

1. We want to prove VM # M : |[M||¢x > |[M]||x w.h.p.
2. To do so, we use O||M||¢;.

o Let Z € 0||M|t,, then we can do
[Mller = (Z, M — M) + [[Mfe:.
o J||M]||;; has a known expression using UV " and 7.

3. Then our objective becomes (Z, M — M) > 0.

o We actually use “approximate” subgradient Y for 3.
e This Y is called the dual certificate.



Road map 35

Main lemma (informal)

If Y: dual certificate exists, then HﬁHtr > || M|
unless M = M.

Existence of dual certificate w.h.p. (informal)

1. Construct a candidate Y by golfing scheme.
2. Prove that Y is actually a dual certificate.
¢ based on concentration inequalities (Bernstein-type).



Proof Part 1: Main Lemma



Definition of dual certificate 36

Definition (Dual certificate)

We say that Y € R™*"2 is a dual certificate if it
satisfies

1. 'Y € rangeP}
2. |UVT — PTYHF <&
3. (|PreYlop <

By definition of P*, we have (Po(IM® — M), Y) > 0.



Main lemma 37

Given a dual certificate Y (and a little more condition),
we can have the following result.

Lemma (Main lemma)

Assume that

1. a dual certificate Y exists
2. ||PrPaPsPr — PrPsPrlop < 5 — vB.

Then, the minimizer of trace-norm minimization

(Eq. (1)) is unique and is equal to M.



Proof (Lemma 13) 38

(Proof)

Note that M is in the feasibility set of Eq. (1).

Let M € R™>" be another matrix (different from
M) in the feasibility set

—

denote H .= M — M.

Since the trace-norm is dual to the operator norm [5,

Proposition 2.1],



Proof (Lemma 13) (cont.) 39

o there exists W € T which satisfies |W||,, = 1 and
(W, Pr.H) = ||[ProHlfi.

o It is also known that by using this W, UV + W is
a subgradient of || - ||, at M [2].

e Therefore, we can calculate



Proof (Lemma 13) (cont.) 40

Ml = M + Hllx
= ”M”tr + <H7 UVT - PTY> + <HaW - ,PTLY> + <H7Y>
> Ml + (PrH, UV = PrY) + (ProH, W — Pr.Y) + (H,Y),
(3)

where we used the self-adjointness of the projection
operators, as well as UV € T..
From here, we will bound each term in the rightmost
equation of Eq. (3).
[Lower-bounding (H,Y) with 0]



Proof (Lemma 13) (cont.) 41

We have (H,Y) > (M°—M,Y) > 0, since
(H,Y) — (M° = M, Y) = (M- M, Y) = (Po(M - M°),Y) >0

can be seen by considering the signs element-wise.
[Lower-bounding (P H, Pri(W —Y)) with ||Pr.H]|g]
We have

<PTJ_H,PTJ_ (W - Y)> = ||7DTJ-HHtr - <PTJ_H,7DTJ_Y>

> (1 - H,PTLYHOP)”,PTJ-HHM
> (1= ([P Y lop) | Pr- Hi[p.



Proof (Lemma 13) (cont.) 42

[Lower-bounding (PrH, UV — PrY) with ||PrH||g]
Now note

(PrH,UV' — PrY) > —||PrH||p|[UV" — PrY||p,

e We go on to upper-bound ||PrH||r by ||Pr-H||p.
o Note 0 = ||R¢PsH]||r >
IRaPsPrH|r — [|R¢PsProHi[p.



Proof (Lemma 13) (cont.) 43

o Therefore, |REPsPrH|r > ||REPsProH|p.

Now

IREPsPrH|2
— (RaPsPrH, PsPrH)
= |PrH||% + (Pr(RaPsPr — Pr)PrH, PrH)
> ||PrH| — |PrRaPsPr — Prllop|PrH||Z
> ||PrH|;
— (IPrRaPsPr — PrPsPrllop + I1PrPsPr — Prllop) |PrH|%

1
> (1- (5 -ve) —ve) IPrEl

1
= §HPTHH%-



Proof (Lemma 13) (cont.)

On the other hand,
|REPsPrHlr < —|PrH|
QBT F > \/}3 T F-
Therefore, we have

2
_|PrHr > \fpnPTLHHF.

[Finishing the proof]
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Proof (Lemma 13) (cont.) 45

Now we are ready to continue the calculation of Eq. (3)
as

IMllir > [IM]ler = [UVT = PrY||el|PrHlp + (1 = [Pr Y [lop) [ Pro Hip +0

2
> [[M|ex — [OVT — 7’TYIIF\/;IIPTLHIIF + (1 = Py Y lop) [|Pr+ Hl|p

> [IMffer + (1 ~[PreYllop = [UVT — PTYIIF\[> [P+ Hllr

1
> Ml + (1 L ) |ProHs

= [IM]er-

Therefore, M is the unique minimizer of Eq. (1). O



What’s next? 46

From here, we will

e construct a candidate of dual certificate Y by golfing
scheme.

e and prove that Y is actually a dual certificate.



Coffee break
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Proof Part 2: Existence of Dual Certificate



Strategy

e Find a candidate of dual certificate Y by golfing
scheme.

e Golfing scheme is like a theoretical SGD.
e We then prove that Y is actually a dual certificate.

e The proof uses concentration inequalities and information
loss.
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Definition of the generalized golfing
scheme

Definition (Generalized golfing scheme)

We recursively define {Wk}iozo by

Ap: =UV'I - W,

Wo : =0
Wi: =W,_1+ R?)kPTAk—l =UV' — (I = R?‘ngT)Ak—l

where R, (-) := Rq, (P*(:)), and define Y := Wy,

e The idea: next slide



The idea of golfing scheme

e W, =W, |+ R;()k’PTAk—l (Ak =UV'T — Wk)
o Goal: approximate UV on T while keeping small

IPr - flop-

50



The idea of golfing scheme
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e W, =W,_ |+ R;iszTAk—l (Ak =UV' — Wk)



The idea of golfing scheme

e W, =W,_; + R*Qk'PTAkfl (Ak =UV' — Wk)



Y is actually a dual certificate. 53

Lemma (Y is a dual certificate)

If for some
B > max{1,1/(4log(nins)), 1 + (log2/log(nins))},

. 1 1 2
p= mm{l,max{W,pmm,pgﬁn,pgﬁn,pfﬂom}} (4)

is satisfied, then the matrix Y € R™*"2 defined by
Def. 14 is a dual certificate (Def. 12) with probability
at least

1— ko(ei(nmg)_ﬂ + 2(77,17%2)1_ﬁ + (n1 + ng)l_ﬁ).



Proof (Y is a dual certificate) 54

(Proof)

e By construction, we have Y & rangePy.

e From here, we show the other two conditions of the
dual certificate.

e In the proof, we will use Prop. 1 below.



Proof (Y is a dual certificate) (cont.) 55

Prop.

P*Z — 7
pop > UV |l sup P72 = Z]op
ZeT\{O}|Z] <OV le 1Dl

Also, by concentration inequalities, we can prove



Proof (Y is a dual certificate) (cont.) s

Concentration inequalities

L. |PrP*PrAc—1 — PrR&, Priv-llr < (3 — pr) |Prie-1llr

2. (R, = PYPrA-Dllop < (7 = pop) oz Pris-ille

3. [[(PrR&, Pr — PrP*Pr)(Prii-1)lle < (3 — Poo) Prli-1lle
hold with the probability specified in the statement of

the theorem.

We trust these inequalities here.
[Upper bounding [[UV T — PrY]||¢]



Proof (Y is a dual certificate) (cont.) s

We confirm by recursion that if Eq. (8) holds for all

k € [ko], then we have |PrAkllr < ||[UVT|g. First, we
have ||PrAg|lr = [[UV " ||¢. Second, if

IPrAk-1lle < UV

F, then

IPrAklle = [[Pr(UVT — W)l
=|UVT — PrW;y_1 — PrR&, Prii-1llr
< |PrAg—1 — PrP*PrAg_a1llr + |PrP*PrAx—1 — PrRy, PriAk—1||

1
< pr||PrAk—1llr + (2 - PF) |PrAk—1llr

1
= §||7’TAk71||F <|UV'r



Proof (Y is a dual certificate) (cont.) sg

Now, by the same recursion formula, we can show

| PrAg,|lr < (%)k0 |PrAo||g. Therefore, under the
condition Eq. (4), by the union bound, we have Eq. (8)
for all k € [ko] with probability at least

1 — koei (nins)~? and

ko
1
[UVT = PrYle = [Praule < (5) IPraole

1 1
</ —uvT
< WWQ\/II 13
p T
< A%
\[Qfl 13
p 1
=4/ ——=VT
\[2\/5‘[

V=




Proof (Y is a dual certificate) (cont.)

because kg = ﬂog2(2\/§1 /nanT)], where we used
= <p.

[Upper bounding ||Pr.Y ||op]
By a similar argument of recursion as above with

59

Eq. (7?) in Lemma ??, we can prove that for all k£ € [k,
IPrAkllse < UVl and [[Pragllee < 5IPrA-1 |,

with probability at least 1 — ko2(n1n2)! =" under the
condition Eq. (4). Similarly, with Eq. ?? in Lemma ??
and using Prop. 1, we obtain for all k£ € [k,

I(R&, — D) (Pra-1)llop < qrovrzIPrli-illeo, with



Proof (Y is a dual certificate) (cont.) ¢

probability at least 1 — ko(n; + n2)' =7 under the
condition Eq. (4). Therefore, under the condition
Eq. (4), with probability at least

1 — ko(2(nin2) =7 + (nq1 + n2)t=), we have

ko
Pro Y R, Pr(Ar1)
k=1

[ProYlop =

op
ko
<Y PR, Pr(Ak—1)lop
l=il
ko
= IProRE, Pr(Di—1) — ProPrii_ilop
k=1



Proof (Y is a dual certificate) (cont.)

ko

< RS, = D)(PrAk-1)llop

k=1

1
< _— Ar_1llso

k41
ZQ WHPTAOHOO

k=1

l\DM—l

By taking the union bound, we have the lemma.

0]
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Lemma Used in the Proof (Y is a dual
certificate) L

In the recursion formula, we have used the following
property yielding from the definition of p,, (Def. 5).

Prop.

P77
pop = UV |l . |P*Z — Z||op
ZeT\{0}:1Z)oc<IUVT e [1Zlloo



Proof (Lemma Used in the Proof) 3

(Proof)

e Wehave {Z €T :||Z|| < ||[UV'|o} C{Z eT:
1Zlop < /12| [UV lop},

e because if ||Z]|s < ||[UV"||w, then we can obtain
1Zllop < /P12l Z]l e < /12l UV oo <
vz UV lop.

o (Here, we used ||Z||,, < \/nin2||Z||~ and
1Z|so < 1Z]op).



Proof (Lemma Used in the Proof) (cont.)g,

e Therefore,
P*Z — ZHO
Pop = \/;/1'1 sup ” 7. L
ZeT\{O}:|Zllop <z |UVT op 1 Bllop
P*Z — 7|,
= ,/n1n2||UVTHOO < sup ””p>

ZeT\{O}:I|Zllop<vAaTaz|UVTllop 1 Zllop

IP*Z — Z||,
2 ”UVT”OO sup 1 ||Z|| .
ZeT\{O}:||Z]| = <[[UV || J/nins op

|P*Z - Z|,
> UV s sup 7 P,
ZeT\{O}:||Z|| o <IIUVT || oo e



Coffee break
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Concentration Inequalities



This section

e Many concentration inequalities are shown for
reference.

e In this talk, only the vector Bernstein inequality will
be used.
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Matrix Bernstein inequality 67

Theorem (Matrix Bernstein inequality [7])

Let {Zy}E_, be independent random matrices with
dimensions dy X ds. If E(Zy) = O and ||Zk||op < R
(a.s.), then define 02 :=

)

max{HzﬁzlE(zgzk)Ho

Then for all t  [0,%]

_ 342
P >t S(d1+d2)exp( 082 )
op

S v E(ZiZ))

)
1%

L

>z

k=1

holdes



Matrix Bernstein inequality (cont.) g5

Theorem (Matrix Bernstein inequality [7])
Therefore, if

8 d1—|-d2 2 O’2
— <7
\/3<log 5 )a < m (5)

then with probability at least 1 — ¢,

8 dqy + do
< = 2
_\/3 <log 5 )0

L

D2

k=1

op

holds.



Vector Bernstein inequality 69

Theorem (Vector Bernstein inequality [4])

Let {v}.}£_, be independent random vectors in R?.
Suppose that Ev, = o and ||vi|]| < R (a. s) and put
L E|wgl|? < 0. Then for all t € [0

( >t><exp( (t/ggl))gexp<8i‘22+jl>

holds.



Vector Bernstein inequality (cont.)

Theorem (Vector Bernstein inequality [4])

Therefore, given

(6)

o1/2+ 8log —

]
:u\%

with probability at least 1 — 6,

/ 1
<oc 2+810g5

L

>

k=1

holds.



Scalar Bernstein inequality 71

Theorem (Bernstein’s inequality for scalars [1,
Corollary 2.11])

Let X;,...,X, be independent real-valued random
variables that satisfy | X;| < R (a.s.), ]E[X] =0, and
S E[X?] < 0. Then for allt € [0

gt }<>

> X >

i=1

holds.



Scalar Bernstein inequality (cont.) 1,

Theorem (Bernstein’s inequality for scalars [1,
Corollary 2.11])

Therefore, given

202 log§ < 7 , (7)

holds.



Proof Part 3: Auxiliary Lemma (Concentration Inequalities)



Concentration properties 73

From here, we denote Pj(-) := (P*(*))i;
We need to prove the following concentrations.
L. ||PrP*PrA_1 — PrRy, Pric-llr < (5 — pr) [|[Pris—1llr
CNRa, = P Prd—1)llop < (5 = pop) WHPTAkAHoo
: H(PTRQka ~ PrP*Pr)(PrAi-1)llco < (3 = poo) IPrde-1lleo
4. |PrRaPsPr — PrPsPrlop < 3 — s

We will prove only 1. here.



Frobenius norm concentration 74




Frobenius norm concentration (cont.) 5

Lemma (Frobenius norm concentration)

Assume that pp < % and that for some
B> 1/(4log(nins)),

p Z min {17p£1in} ’

is satisfied. Let k € {1,... ko}. Then, given PpAj_4
that is independent of €1, we have, w.p.
> 1 — ei(mng) 7P,

1
|PrP*PrAkx_1 — PrRo, PriAi—1lr < (2 - PF) PrAxk—1llF (8)



Proof (Frobenius norm concentration)

Before moving on to the proof, let us note the following
property of coherence to be used in the proof.

Prop.
ni + na

V|12
IPr(e:f; s < L



Proof (Frobenius norm concentration)
(cont.) v

Proof.

IPr(e:f)IE = 1Pules ;DI + 1Py (e IR — IPulefDIRIPY (esf)IIE

< 1PuleifNDIE + 1Py (e,

ny + no
<M
ning



Proof (Frobenius norm concentration)
(cont.) i

Note that since (1 — p)'/% < 1 — (1/kg)p, it follows that
q > (1/ko)p. We will repeatedly use this relation in
proving concentration properties.



Proof (Frobenius norm concentration) ;4

(Proof)
o If p=1, then we have ¢ = 1, therefore Eq. (8) holds.
Thus, from here, we assume 1 > p > pgﬁn.

o First decompose ||PrP*PrA;_1 — PrRy Prii-1llr as
|PrP*PrAr—1 — PrRG, PrAs_1|lr

(k)
W, .
= PTE <1— qj )Pij(<eifJTaPTAkl>)eif;—
(4,9)

F
(k)

Z (1 - w;j ) Pi((eif) , PrAk—1))Pr(eif} )
(4,9)

= ’Z Sij

F




Proof (Frobenius norm concentration)
(cont.) el

e From here, we check the conditions for the vector
Bernstein inequality (Theorem 19).

Now it is easy to verify that E[S;;] = O. We also have

(k)
||Sij|F:< “u )I S(ef Pras-)IPr(ef;)lls

—

< =i PrAv-1)lIIPrleif] )lr

| —

||7’T(€sz)||F||7)TAk 1llr

1n +n
< -2 || Pr A e
q ning



Proof (Frobenius norm concentration)
(cont.) et

On the other hand,

w®\
> E[SylE=)_E (1 - qj>
(4,9) (4,9)
= q *
= Y Phi(ef ] Prag-1))?IPr(ef,)IIE
(4,5)
]_ _
< Tq Z<ei.ijaPTAk—1>2||PT(eiij)”%
(i-d)
1—g¢g
<~ max {IPr(ef IR} X (eif] Prav-r)’
’ (4,5)
1

—q
e (iéﬁi||7’T(ez'ij)H%|l7’TAk—1II%

P5((eif] Prak-1)? I Pr(es IR




Proof (Frobenius norm concentration)

(cont.) e
1
< = max||Pr(e: ;") | IPrAk-1l3
q (i)
1 /n+n
= - (12M0T> |PrAk—1]%.
q nin2
Let
. N1+Nne . Nni+ne
R = qnmz,u or |PrAL_1]|p, 0% := e Lo |

and § = ei(nyny) ", Under the condition

F
P Pmi 8pior ni + ng
> Z > min = 1 ,
1= ko = ko (1/2 - PF)Qﬁ og(mnz) n1N2




Proof (Frobenius norm concentration)
(cont.) e

the condition (6) of Theorem 19 is satisfied, because

1 ny+n
\/(2 + 8log 5) 0? = \/85 log(n1ng) — 22 por||PrAg—1llr

qnin

o2

1
< - — < = —.
< (2 PF) |PrAg_1lle < |PrAg—1|r 7

Therefore, applying Theorem 19 with d = nins, we

1 1
< \/<2 + 8log 5) 02 < (2 — pF) 1PrAk_1]r

F

obtain

> S

(4,9)




Proof (Frobenius norm concentration)
(cont.) es

with probability at least 1 — ei(nlng)_ﬂ.

0



Other concentration inequalities 85

For the concentration of

o [(Rg, — P)(PrAk-1llop < (3 — pop) WHPTA}C—IHOO

o ||(PrRy, Pr— PrP*Pr)(PrAr-1)lleo < (3 — poo) IPride-1lleo
o |PrRaPsPr — PrPsPrllop < & — vs

please refer to the paper (they are similar but require
different calculations).



Proof Final Part: Combining all



Proof of Theorem
thm:exact-recovery-guarantee 86

Proof.
The theorem immediately follows from the
combination of Lemma 13, Lemma ??, Lemma 15, and

the union bound. ]



Motivation and Problem Setting

Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement

Preliminary for the Proof
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Concentration Inequalities
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