Clipped Matrix Completion [6] (Exact Recovery Guarantee)

Takeshi Teshima

December 24, 2018
The University of Tokyo

Motivation and Problem Setting

Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Dreliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Ceiling Effect

Ceiling effect

Measurement limitation that observations are clipped at a threshold at the time of observation.

- Ex. Questionnaire

- Too many people answer with " 5 " (max value).
- \Rightarrow questionnaire may not be measuring the domain correctly.
- There may exist some more variation within " 5 ".

Ceiling Effect in ML Benchmark

Movielens 100K

FilmTrust

Figure 1: Histograms of benchmark recommendation systems data.

- Right-truncated histogram ... typical for variable under ceiling effects.
- Recover matrix from missing, noise, etc.

- Movie recommendation

MC: Why would it ever work?

- Assume the matrix has a low rank.
- Principle of low-rank completion

$M_{i j}$
- Low-rank $=$ few latent factors dominate.
- Estimate the latent vectors, then one can impute values.

MC: The algorithm

We want to do

Rank minimization

$\min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}} \operatorname{rank}(\mathbf{X})$ st. (\mathbf{X} complies with observation)
However, rank minimization is intractable. Instead:

Trace-norm minimization

 $\min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\|\mathbf{X}\|_{*}$ st. (X complies with observation)- Rank is count $\sum_{k} \mathbf{1}\left\{\sigma_{k}>0\right\}$, Trace-norm is sum $\Sigma_{k} \sigma_{k}$
- By [2], trace-norm minimization was given a guarantee that " \widehat{M} completely recovers M."

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Problem of Clipped Matrix Completion 7

- $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}$: the ground-truth matrix.
- $C \in \mathbb{R}$: the clipping threshold.
- $\operatorname{Clip}(\cdot):=\min \{C, \cdot\}$: the clipping operator (element-wise).
- $\mathbf{M}^{c}:=\operatorname{Clip}(\mathbf{M})$: full clipped matrix.
- Ω : the random set of observed indices (details later).

Problem (Clipped matrix completion (CMC))

Accurately recover \mathbf{M} from $\mathbf{M}_{\Omega}^{\mathrm{c}}:=\left\{M_{i j}^{\mathrm{c}}\right\}_{(i, j) \in \Omega}$ and C.

Illustration of CMC

4	7	4	7	4
0	3	6	15	12
4	6	2	2	0
2	6	7	16	12
8	13	6	9	4

(a) True matrix M

	7	4	7	4
0	3	6	10	10
4	6	2	2	0
2	6	7	10	10
8	10	6	9	4

(b) Observed $\mathrm{M}_{\Omega}^{\mathrm{c}}$

4.0	7.0	4.0	7.0	4.0
-0.0	3.0	6.0	14.9	11.9
4.0	6.0	2.0	2.0	0.0
2.0	6.0	7.0	15.9	11.9
8.0	13.0	6.0	9.0	4.0

(c) Restored \widehat{M}

Figure 2: The true low-rank matrix M has a distinct structure of large values. However, the observed data \mathbf{M}_{Ω}^{c} is clipped at a predefined threshold $C=10$. The goal of CMC is to restore M from the value of C and $\mathbf{M}_{\Omega}^{\mathrm{c}}$. The restored matrix $\widehat{\mathrm{M}}$ is an actual result of applying a proposed method (Fro-CMC).

Trace-norm minimization for CMC

Trace-norm minimization for CMC

$$
\widehat{\mathbf{M}} \in \underset{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}{\arg \min }\|\mathbf{X}\|_{\text {tr }} \text { s.t. }\left\{\begin{array}{l}
\mathcal{P}_{\Omega \backslash \mathcal{C}}(\mathbf{X})=\mathcal{P}_{\Omega \backslash \mathcal{C}}\left(\mathbf{M}^{\mathrm{c}}\right), \tag{1}\\
\mathcal{P}_{\mathcal{C}}\left(\mathbf{M}^{\mathrm{c}}\right) \leq \mathcal{P}_{\mathcal{C}}(\mathbf{X}) .
\end{array}\right.
$$

- Research question: can we prove $\widehat{\mathbf{M}}=\mathbf{M}$ (w.h.p.)?

Rough statement of the main theorem

Rough statement of the theorem

Assume

- M has nice properties (small information loss by clipping, incoherent, low-rank)
- observations are independent with probability p.
- p is large enough

Then, $\widehat{M}=\mathbf{M}$ with high probability.
(2) CMC is feasible under a sufficient condition!

Coffee break

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Quantities required for the statement

We need to define

- Coherence of M
- Information loss of M

Quantity 1: Coherence

Definition (Leverage scores [3])

Let $\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}$ have a skinny singular value decomposition $\mathbf{X}=\tilde{\mathbf{U}} \tilde{\Sigma} \tilde{\mathbf{V}}^{\top}$. We define

$$
\mu^{\mathrm{U}}(\mathbf{X}):=\max _{i \in\left[n_{1}\right]}\left\|\tilde{\mathbf{U}}_{i,},\right\|^{2}, \quad \mu^{\mathrm{V}}(\mathbf{X}):=\max _{j \in\left[n_{2}\right]}\left\|\tilde{\mathbf{V}}_{j,},\right\|^{2},
$$

where $\tilde{\mathbf{U}}_{i, \cdot}\left(\tilde{\mathbf{V}}_{j,}\right)$ is the i-th (resp. j-th) row of $\tilde{\mathbf{U}}$ (resp. $\tilde{\mathbf{V}}$).

- These are used to define the coherence of \mathbf{M}.

Quantity 1: Coherence (cont.)

Definition (Coherence and joint coherence [3])

Now the coherence of \mathbf{M} is defined by

$$
\mu_{0}:=\max \left\{\frac{n_{1}}{r} \mu^{\mathrm{U}}(\mathbf{M}), \frac{n_{2}}{r} \mu^{\mathrm{V}}(\mathbf{M})\right\}
$$

In addition, we define the following joint coherence:

$$
\mu_{1}:=\sqrt{\frac{n_{1} n_{2}}{r}}\left\|\mathbf{U V}^{\top}\right\|_{\infty} .
$$

What does coherence mean?

- Note

$$
\begin{aligned}
\left\|\mathbf{U}_{i, \cdot}\right\|^{2} & =\sum_{k}\left\langle\mathbf{U}_{\cdot, k}, \boldsymbol{e}_{i}\right\rangle^{2} \\
& =\left\|\sum_{k} \mathbf{U}_{\cdot, k}\left\langle\mathbf{U}_{\cdot, k}, \boldsymbol{e}_{i}\right\rangle\right\|^{2} \\
& =\left\|\mathbf{U U}^{\top} e_{i}\right\|^{2} \\
& =\left\|\mathcal{P}_{U}\left(e_{i}\right)\right\|^{2},
\end{aligned}
$$

where $U:=\operatorname{Span}\left(u_{1}, \ldots, u_{r}\right)$.

- Therefore, a small coherence implies that there is no element in U that is "aligned" with e_{i}.
- In other words, no element in U are too sparse.

What does coherence mean? (cont.)

- As a result, the components $\boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\top}$ that \mathbf{M} is composed of (as $\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}$) cannot be sparse.
- The condition that coherence is small excludes the possibility that M is "spiky".
- The condition of \mathbf{M} being low-rank is not enough to guarantee recovery.
- e.g., a matrix with only the 1 , 1 -entry being one and all others being zeros is also rank-one.
- Incoherence condition (coherence being small) excludes such a possibility.

What does coherence mean? (cont.)

- Spiky matrix is possible when there is a sparse component $u_{k} v_{k}^{\top}$.
- Sparsity of $u_{k} v_{k}^{\top}$ means that there is a sparse u_{k} or v_{k}.
- Let's say u_{k} is sparse.
- Then, considering the normalization property of U (column vectors are normalized to norm-one), there must be a gathered mass in some dimension i of u_{k}.

Quantity 2: The information subspace

- We will define the information subspace T of \mathbf{M}.
- T is important because...

1. $\mathrm{M} \in T$.
2. T is used for explicit expression of $\partial\|\mathbf{M}\|_{\text {tr }}$.

- Let $\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}$. Then $\mathbf{U V}^{\top} \in T$ and $\partial\|\mathbf{M}\|_{\text {tr }}=\left\{\mathbf{W}+\mathbf{U V}^{\top}: \mathbf{W} \in T^{\perp},\|\mathbf{W}\|_{\text {op }} \leq 1\right\}$.
- $\mathbf{U V}^{\top} \in T$.
- The feasibility of recovery depends upon the amount of information we have about T.

Quantity 2: The information subspace (cont.)

Definition (The information subspace of M [2])

- $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$: skinny singular value decomposition (SVD) $\left(\mathbf{U} \in \mathbb{R}^{n_{1} \times r}, \boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}\right.$ and $\left.\mathbf{V} \in \mathbb{R}^{n_{2} \times r}\right)$.
- Define the information subspace of M by $T:=\operatorname{span}\left(\left\{\boldsymbol{u}_{k} \boldsymbol{y}^{\top}: k \in[r], \boldsymbol{y} \in \mathbb{R}^{n_{2}}\right\} \cup\left\{\boldsymbol{\boldsymbol { v } _ { k } ^ { \top }}: k \in[r], \boldsymbol{x} \in \mathbb{R}^{n_{1}}\right\}\right)$
- where $\boldsymbol{u}_{k}, \boldsymbol{v}_{k}$ are the k-th column of \mathbf{U} and \mathbf{V} (resp.).
- $\mathcal{P}_{T}, \mathcal{P}_{T^{\perp}}$: the projections onto T and T^{\perp}, resp.

(Key) quantity 3: Information loss

- Using T, we capture the information loss.
- The loss are measured in three different norms:
$\|\cdot\|_{\mathrm{F}},\|\cdot\|_{\mathrm{op}}$, and $\|\cdot\|_{\text {tr }}$.
- To express the factor of clipping, we define an element-wise transformation \mathcal{P}^{*}.
- \mathcal{P}^{*} describes the amount of information left after clipping

(Key) quantity 3: Information loss (cont.) ${ }_{21}$

- In the theorem of exact recovery guarantee, we will assume: information loss is small and enough information is left by \mathcal{P}^{*}.

(Key) quantity 3: Information loss (cont.) ${ }_{22}$

Definition (The information loss)

$$
\begin{aligned}
& \rho_{\mathrm{F}}:=\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\mathrm{F}} \leq\left\|\mathbf{U} \mathbf{V}^{\top}\right\|_{\mathrm{F}}} \frac{\left\|\mathcal{P}_{T} \mathcal{P}^{*}(\mathbf{Z})-\mathbf{Z}\right\|_{\mathrm{F}}}{\|\mathbf{Z}\|_{\mathrm{F}}}, \\
& \rho_{\infty}:=\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}} \frac{\left\|\mathcal{P}_{T} \mathcal{P}^{*}(\mathbf{Z})-\mathbf{Z}\right\|_{\infty}}{\|\mathbf{Z}\|_{\infty}}, \\
& \rho_{\text {op }}:=\sqrt{r} \mu_{1}\left(\sup _{\substack{\mathbf{Z} \in T \backslash\{\mathbf{O}\}: \\
\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\left\|\mathbf{U} \mathbf{V}^{\top}\right\|_{\text {op }}}} \frac{\left\|\mathcal{P}^{*}(\mathbf{Z})-\mathbf{Z}\right\|_{\text {op }}}{\|\mathbf{Z}\|_{\text {op }}}\right), \\
& \left(\mathcal{P}^{*}(\mathbf{Z})\right)_{i j}= \begin{cases}Z_{i j} & \text { if } M_{i j}<C, \\
\max \left\{Z_{i j}, 0\right\} & \text { if } M_{i j}=C, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(Key) quantity 4: The importance of $\mathcal{B}{ }_{23}$

- Another quantity $\nu_{\mathcal{B}}$ to measure the information loss is required.
- If this quantity is small, enough information of T may be left in non-clipped entries.

Definition (The importance of clipped entries)

Define

$$
\nu_{\mathcal{B}}:=\left\|\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T}\right\|_{\mathrm{op}},
$$

where $\mathcal{B}:=\left\{(i, j): M_{i j}<C\right\}$.

Assumption on the observation scheme

Assumption (Assumption on the observation scheme)

- $p \in[0,1], k_{0}:=\left\lceil\log _{2}\left(2 \sqrt{2} \sqrt{n_{1} n_{2} r}\right)\right\rceil$, and

$$
q:=1-(1-p)^{1 / k_{0}}
$$

- For each $k=1, \ldots, k_{0}$,
- $\Omega_{k} \subset\left[n_{1}\right] \times\left[n_{2}\right]$: a random set of matrix indices such that
- sampled according to $\mathbb{P}\left((i, j) \in \Omega_{k}\right)=q$
- $\left\{(i, j) \in \Omega_{k}\right\}$ are all independent.
- Then, Ω was generated by $\Omega=\bigcup_{k=1}^{k_{0}} \Omega_{k}$.

The need for Assumption 1 is technical [3].

The theorem

Theorem (Exact recovery guarantee for CMC)

Assume $\rho_{\mathrm{F}}<\frac{1}{2}, \rho_{\text {op }}<\frac{1}{4}, \rho_{\infty}<\frac{1}{2}, \nu_{\mathcal{B}}<\frac{1}{2}$, and Assumption 1 for some $p \in[0,1]$. For simplicity of the statement, assume $n_{1}, n_{2} \geq 2$ and $p \geq \frac{1}{n_{1} n_{2}}$. If, additionally,

$$
p \geq \min \left\{1, c_{\rho} \max \left(\mu_{1}^{2}, \mu_{0}\right) r f\left(n_{1}, n_{2}\right)\right\}
$$

is satisfied, then...

The theorem (cont.)

Theorem (Exact recovery guarantee for CMC)

... the solution of Eq. (1) is unique and equal to \mathbf{M} with probability at least $1-\delta$, where

$$
\begin{aligned}
c_{\rho}= & \max \left\{\frac{24}{\left(1 / 2-\rho_{\mathrm{F}}\right)^{2}}, \frac{8}{\left(1 / 4-\rho_{\mathrm{op}}\right)^{2}},\right. \\
& \left.\frac{8}{\left(1 / 2-\rho_{\infty}\right)^{2}}, \frac{8}{\left(1 / 2-\nu_{\mathcal{B}}\right)^{2}}\right\}, \\
f\left(n_{1}, n_{2}\right)= & \mathcal{O}\left(\frac{\left(n_{1}+n_{2}\right)\left(\log \left(n_{1} n_{2}\right)\right)^{2}}{n_{1} n_{2}}\right), \\
\delta \quad= & \mathcal{O}\left(\frac{\log \left(n_{1}, n_{2}\right)}{n_{1}+n_{2}}\right)\left(n_{1}+n_{2}\right)^{-1} .
\end{aligned}
$$

Coffee break

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Linear algebra and functional analysis 28

- Matrix inner product: $\langle\mathbf{X}, \mathbf{Y}\rangle=\sum_{i j} X_{i j} Y_{i j}$.
- Matrix norms:
- $\|\mathrm{X}\|_{\mathrm{F}}:=\sqrt{\langle\mathrm{X}, \mathrm{X}\rangle}$
- $\|\mathbf{X}\|_{\text {tr }}:=\sum_{k} \sigma_{k}\left(\sigma_{k}:\right.$ singular values $)$
- $\|\mathbf{X}\|_{\text {op }}:=\sup _{\boldsymbol{v}:\|\boldsymbol{v}\|=1}\|\mathbf{X} \boldsymbol{v}\|$

Linear algebra and functional analysis

- $\|\cdot\|_{\text {tr }}$ and $\|\cdot\|_{\text {op }}$ are dual.
- $|\langle\mathbf{X}, \mathbf{Y}\rangle| \leq\|\mathbf{X}\|_{\text {op }}\|\mathbf{Y}\|_{\text {tr }}$
- Let $S \subset \mathbb{R}^{n_{1} \times n_{2}}$: subspace. For each $\mathbf{Y} \in S$, there exists $\mathbf{X} \in S$ such that
- $\|\mathbf{X}\|_{\mathrm{op}}=1$
- $\langle\mathbf{X}, \mathbf{Y}\rangle=\|\mathbf{X}\|_{\text {op }}\|\mathbf{Y}\|_{\text {tr }}$
- $\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{\top}$: (skinny) SVD. Then,
- $\mathbf{U V}^{\top} \in T$.
- $\partial\|\mathbf{X}\|_{\text {tr }}=\left\{\mathbf{W}+\mathbf{U V}^{\top}: \mathbf{W} \in T^{\perp},\|\mathbf{W}\|_{\text {op }} \leq 1\right\}$
(subgradients are (1) $\mathbf{U V}^{\top}$ on T (2) small norm on T^{\perp}).

Notation

- $\omega_{i j}:=1\{(i, j) \in \Omega\}, \omega_{i j}^{(k)}:=1\left\{(i, j) \in \Omega_{k}\right\}$
- $\mathcal{R}_{\Omega}:=\frac{1}{p} \mathcal{P}_{\Omega}, \mathcal{R}_{\Omega}^{\frac{1}{2}}:=\frac{1}{\sqrt{p}} \mathcal{P}_{\Omega}, \mathcal{R}_{\mathcal{C}}:=\frac{1}{p} \mathcal{P}_{\mathcal{C}}$, and $\mathcal{R}_{\Omega_{k}}:=\frac{1}{q} \mathcal{P}_{\Omega_{k}}$
- Note: $\mathcal{P}_{\Omega \backslash C}, \mathcal{P}_{\mathcal{C}}, \mathcal{P}_{\Omega}, \mathcal{R}_{\Omega}, \mathcal{R}_{\Omega}^{\frac{1}{2}}$ are all self-adjoint.
- $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n_{1}},\left\{\boldsymbol{f}_{j}\right\}_{j=1}^{n_{2}}$: The standard bases of $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ (resp.).

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Detailed Form of the Theorem

Theorem 8 is a simplified version of the following.

Theorem

Assume $\rho_{\mathrm{F}}<\frac{1}{2}, \rho_{\mathrm{op}}<\frac{1}{4}, \rho_{\infty}<\frac{1}{2}$, and $\nu_{\mathcal{B}}<\frac{1}{2}$, and assume the independent and uniform sampling scheme as in Assumption 1. If for some
$\beta>\max \left\{1,1 /\left(4 \log \left(n_{1} n_{2}\right)\right), 1+\left(\log 2 / \log \left(n_{1} n_{2}\right)\right)\right\}$,

$$
\begin{equation*}
p \geq \min \left\{1, \max \left\{\frac{1}{n_{1} n_{2}}, p_{\min }^{\mathrm{F}}, p_{\min }^{\mathrm{op}, 1}, p_{\min }^{\mathrm{op}, 2}, p_{\min }^{\infty}, p_{\min }^{\operatorname{main}}\right\}\right\} \tag{2}
\end{equation*}
$$

where...

Detailed Form of the Theorem (cont.)

Theorem

$$
\begin{aligned}
p_{\min }^{\mathrm{F}} & =\frac{8 k_{0} \mu_{0} \beta r}{\left(1 / 2-\rho_{\mathrm{F}}\right)^{2}} \frac{\left(n_{1}+n_{2}\right) \log \left(n_{1} n_{2}\right)}{n_{1} n_{2}} \\
p_{\min }^{\mathrm{op}, 1} & =\frac{8 k_{0} \beta}{3\left(1 / 4-\rho_{\mathrm{op}}\right)^{2}} \frac{\log \left(n_{1}+n_{2}\right)}{\max \left(n_{1}, n_{2}\right)} \\
p_{\min }^{\mathrm{op}, 2} & =\frac{8 k_{0} \beta r \mu_{1}^{2}}{3\left(1 / 4-\rho_{\mathrm{op}}\right)^{2}} \frac{\max \left(n_{1}, n_{2}\right) \log \left(n_{1}+n_{2}\right)}{n_{1} n_{2}} \\
p_{\min }^{\infty} & =\frac{8 k_{0} \mu_{0} r \beta}{3\left(1 / 2-\rho_{\infty}\right)^{2}} \frac{\left(n_{1}+n_{2}\right) \log \left(n_{1} n_{2}\right)}{n_{1} n_{2}} \\
p_{\min }^{\operatorname{main}} & =\frac{8 \beta r \mu_{0}}{3\left(1 / 2-\nu_{\mathcal{B}}\right)^{2}} \frac{\left(n_{1}+n_{2}\right) \log \left(n_{1} n_{2}\right)}{n_{1} n_{2}}
\end{aligned}
$$

is satisfied, then...

Detailed Form of the Theorem (cont.) 33

Theorem

... the minimizer of Eq. (1) is unique and equal to M with probability at least $1-k_{0}\left(e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}+\right.$
$\left.2\left(n_{1} n_{2}\right)^{1-\beta}+\left(n_{1}+n_{2}\right)^{1-\beta}\right)-2\left(n_{1} n_{2}\right)^{1-\beta}$.

Road map

1. We want to prove $\forall \widehat{\mathbf{M}} \neq \mathbf{M}:\|\widehat{\mathbf{M}}\|_{\text {tr }}>\|\mathbf{M}\|_{\text {tr }}$ w.h.p.
2. To do so, we use $\partial\|\mathbf{M}\|_{\text {tr }}$.

- Let $\mathbf{Z} \in \partial\|\mathbf{M}\|_{\text {tr }}$, then we can do
$\|\widehat{\mathbf{M}}\|_{\text {tr }} \geq\langle\mathbf{Z}, \widehat{\mathbf{M}}-\mathbf{M}\rangle+\|\mathbf{M}\|_{\text {tr }}$.
- $\partial\|\mathbf{M}\|_{\text {tr }}$ has a known expression using $\mathbf{U V}^{\top}$ and T^{\perp}.

3. Then our objective becomes $\langle\mathbf{Z}, \widehat{\mathbf{M}}-\mathbf{M}\rangle>0$.

- We actually use "approximate" subgradient Y for 3 .
- This Y is called the dual certificate.

Road map

Main lemma (informal)

If \mathbf{Y} : dual certificate exists, then $\|\widehat{\mathbf{M}}\|_{\text {tr }}>\|\mathbf{M}\|_{\text {tr }}$ unless $\widehat{\mathrm{M}}=\mathbf{M}$.

Existence of dual certificate w.h.p. (informal)

1. Construct a candidate \mathbf{Y} by golfing scheme.
2. Prove that \mathbf{Y} is actually a dual certificate.

- based on concentration inequalities (Bernstein-type).

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Definition of dual certificate

Definition (Dual certificate)

We say that $\mathbf{Y} \in \mathbb{R}^{n_{1} \times n_{2}}$ is a dual certificate if it satisfies

1. $\mathbf{Y} \in \operatorname{range} \mathcal{P}_{\Omega}^{*}$
2. $\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}} \leq \frac{\sqrt{\mathcal{P}}}{2 \sqrt{2}}$
3. $\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\text {op }}<\frac{1}{2}$

By definition of \mathcal{P}^{*}, we have $\left\langle\mathcal{P}_{\Omega}\left(\mathrm{M}^{\mathrm{c}}-\mathrm{M}\right), \mathrm{Y}\right\rangle \geq 0$.

Main lemma

Given a dual certificate \mathbf{Y} (and a little more condition), we can have the following result.

Lemma (Main lemma)

Assume that

1. a dual certificate \mathbf{Y} exists
2. $\left\|\mathcal{P}_{T} \mathcal{P}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}\right\|_{\text {op }} \leq \frac{1}{2}-\nu_{\mathcal{B}}$.

Then, the minimizer of trace-norm minimization
(Eq. (1)) is unique and is equal to M .

Proof (Lemma 13)

(Proof)

- Note that \mathbf{M} is in the feasibility set of Eq. (1).
- Let $\widehat{\mathbf{M}} \in \mathbb{R}^{n_{1} \times n_{2}}$ be another matrix (different from M) in the feasibility set
- denote $\mathbf{H}:=\widehat{\mathbf{M}}-\mathbf{M}$.
- Since the trace-norm is dual to the operator norm [5, Proposition 2.1],

Proof (Lemma 13) (cont.)

- there exists $\mathbf{W} \in T^{\perp}$ which satisfies $\|\mathbf{W}\|_{\text {op }}=1$ and $\left\langle\mathbf{W}, \mathcal{P}_{T^{\perp}} \mathbf{H}\right\rangle=\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\text {tr }}$.
- It is also known that by using this $\mathbf{W}, \mathbf{U V}^{\top}+\mathbf{W}$ is a subgradient of $\|\cdot\|_{\text {tr }}$ at \mathbf{M} [2].
- Therefore, we can calculate

Proof (Lemma 13) (cont.)

$$
\begin{aligned}
\|\widehat{\mathbf{M}}\|_{\text {tr }} & =\|\mathbf{M}+\mathbf{H}\|_{\text {tr }} \\
& \geq\|\mathbf{M}\|_{\text {tr }}+\left\langle\mathbf{H}, \mathbf{U} \mathbf{V}^{\top}+\mathbf{W}\right\rangle \\
& =\|\mathbf{M}\|_{\text {tr }}+\left\langle\mathbf{H}, \mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\rangle+\left\langle\mathbf{H}, \mathbf{W}-\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\rangle+\langle\mathbf{H}, \mathbf{Y}\rangle \\
& \geq\|\mathbf{M}\|_{\text {tr }}+\left\langle\mathcal{P}_{T} \mathbf{H}, \mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\rangle+\left\langle\mathcal{P}_{T^{\perp}} \mathbf{H}, \mathbf{W}-\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\rangle+\langle\mathbf{H}, \mathbf{Y}\rangle
\end{aligned}
$$

where we used the self-adjointness of the projection operators, as well as $\mathbf{U V}^{\top} \in T$.
From here, we will bound each term in the rightmost equation of Eq. (3).
[Lower-bounding $\langle\mathbf{H}, \mathbf{Y}\rangle$ with 0]

Proof (Lemma 13) (cont.)

We have $\langle\mathbf{H}, \mathbf{Y}\rangle \geq\left\langle\mathbf{M}^{c}-\mathbf{M}, \mathbf{Y}\right\rangle \geq 0$, since

$$
\langle\mathbf{H}, \mathbf{Y}\rangle-\left\langle\mathbf{M}^{\mathrm{c}}-\mathbf{M}, \mathbf{Y}\right\rangle=\left\langle\widehat{\mathbf{M}}-\mathbf{M}^{\mathrm{c}}, \mathbf{Y}\right\rangle=\left\langle\mathcal{P}_{\Omega}\left(\widehat{\mathbf{M}}-\mathbf{M}^{\mathrm{c}}\right), \mathbf{Y}\right\rangle \geq 0
$$

can be seen by considering the signs element-wise. [Lower-bounding $\left\langle\mathcal{P}_{T^{\perp}} \mathbf{H}, \mathcal{P}_{T^{\perp}}(\mathbf{W}-\mathbf{Y})\right\rangle$ with $\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}$] We have

$$
\begin{aligned}
\left\langle\mathcal{P}_{T^{\perp}} \mathbf{H}, \mathcal{P}_{T^{\perp}}(\mathbf{W}-\mathbf{Y})\right\rangle & =\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{tr}}-\left\langle\mathcal{P}_{T^{\perp}} \mathbf{H}, \mathcal{P}_{T^{\perp}} \mathbf{Y}\right\rangle \\
& \geq\left(1-\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\mathrm{op}}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{tr}} \\
& \geq\left(1-\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\mathrm{op}}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}
\end{aligned}
$$

Proof (Lemma 13) (cont.)

[Lower-bounding $\left\langle\mathcal{P}_{T} \mathbf{H}, \mathbf{U V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\rangle$ with $\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}$]
Now note

$$
\left\langle\mathcal{P}_{T} \mathbf{H}, \mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\rangle \geq-\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}},
$$

- We go on to upper-bound $\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}$ by $\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}$.
- Note $0=\left\|\mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathbf{H}\right\|_{\mathrm{F}} \geq$
$\left\|\mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}-\left\|\mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}$.

Proof (Lemma 13) (cont.)

- Therefore, $\left\|\mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}} \geq\left\|\mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}$.

Now

$$
\begin{aligned}
\| & \mathcal{R}_{\Omega}^{\frac{1}{2}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H} \|_{\mathrm{F}}^{2} \\
= & \left\langle\mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H}, \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H}\right\rangle \\
= & \left\langle\mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T} \mathbf{H}, \mathcal{P}_{T} \mathbf{H}\right\rangle \\
= & \left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2}+\left\langle\mathcal{P}_{T}\left(\mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T}\right) \mathcal{P}_{T} \mathbf{H}, \mathcal{P}_{T} \mathbf{H}\right\rangle \\
\geq & \left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2}-\left\|\mathcal{P}_{T} \mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T}\right\|_{\mathrm{op}}\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2} \\
\geq & \left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2} \\
& -\left(\left\|\mathcal{P}_{T} \mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}\right\|_{\mathrm{op}}+\left\|\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T}\right\|_{\mathrm{op}}\right)\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2} \\
\geq & \left(1-\left(\frac{1}{2}-\nu_{\mathcal{B}}\right)-\nu_{\mathcal{B}}\right)\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2} \\
= & \frac{1}{2}\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}^{2} .
\end{aligned}
$$

Proof (Lemma 13) (cont.)

On the other hand,

$$
\left\|\mathcal{R}_{\Omega^{\frac{1}{2}}} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}} \leq \frac{1}{\sqrt{p}}\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}
$$

Therefore, we have

$$
-\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}} \geq-\sqrt{\frac{2}{p}}\left\|\mathcal{P}_{T} \pm \mathbf{H}\right\|_{\mathrm{F}} .
$$

[Finishing the proof]

Proof (Lemma 13) (cont.)

Now we are ready to continue the calculation of Eq. (3) as

$$
\begin{aligned}
\|\widehat{\mathbf{M}}\|_{\text {tr }} & \geq\|\mathbf{M}\|_{\text {tr }}-\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}}\left\|\mathcal{P}_{T} \mathbf{H}\right\|_{\mathrm{F}}+\left(1-\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\mathrm{op}}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}+0 \\
& \geq\|\mathbf{M}\|_{\text {tr }}-\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}} \sqrt{\frac{2}{p}}\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}}+\left(1-\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\mathrm{op}}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}} \\
& \geq\|\mathbf{M}\|_{\text {tr }}+\left(1-\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\mathrm{op}}-\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}} \sqrt{\frac{2}{p}}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}} \\
& >\|\mathbf{M}\|_{\text {tr }}+\left(1-\frac{1}{2}-\frac{1}{2}\right)\left\|\mathcal{P}_{T^{\perp}} \mathbf{H}\right\|_{\mathrm{F}} \\
& =\|\mathbf{M}\|_{\text {tr }} .
\end{aligned}
$$

Therefore, \mathbf{M} is the unique minimizer of Eq. (1). \square

From here, we will

- construct a candidate of dual certificate \mathbf{Y} by golfing scheme.
- and prove that \mathbf{Y} is actually a dual certificate.

Coffee break

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Strategy

- Find a candidate of dual certificate \mathbf{Y} by golfing scheme.
- Golfing scheme is like a theoretical SGD.
- We then prove that \mathbf{Y} is actually a dual certificate.
- The proof uses concentration inequalities and information loss.

Definition of the generalized golfing scheme

Definition (Generalized golfing scheme)

We recursively define $\left\{\mathbf{W}_{k}\right\}_{k=0}^{k_{0}}$ by

$$
\begin{cases}\mathbf{W}_{0}:=\mathbf{O} \\ \Delta_{k}: & =\mathbf{U V}^{\top}-\mathbf{W}_{k} \\ \mathbf{W}_{k}: & =\mathbf{W}_{k-1}+\mathcal{R}_{\Omega_{k}} \mathcal{P}_{T} \Delta_{k-1}=\mathbf{U V}^{\top}-\left(\mathcal{I}-\mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}\right) \Delta_{k-1}\end{cases}
$$

where $\mathcal{R}_{\Omega_{k}}^{*}(\cdot):=\mathcal{R}_{\Omega_{k}}\left(\mathcal{P}^{*}(\cdot)\right)$, and define $\mathbf{Y}:=\mathbf{W}_{k_{0}}$.

- The idea: next slide

The idea of golfing scheme

$$
\omega_{k}^{6}
$$

- $\mathbf{W}_{k}:=\mathbf{W}_{k-1}+\mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1} \quad\left(\Delta_{k}:=\mathbf{U V}^{\top}-\mathbf{W}_{k}\right)$ Goal: approximate $\mathbf{U V}^{\top}$ on T while keeping small $\left\|\mathcal{P}_{T^{\perp}} \cdot\right\|_{\mathrm{op}}$.

The idea of golfing scheme

W\&

- $\mathbf{W}_{k}:=\mathbf{W}_{k-1}+\mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1} \quad\left(\Delta_{k}:=\mathbf{U V}^{\top}-\mathbf{W}_{k}\right)$

The idea of golfing scheme

- $\mathbf{W}_{k}:=\mathbf{W}_{k-1}+\mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1} \quad\left(\Delta_{k}:=\mathbf{U} \mathbf{V}^{\top}-\mathbf{W}_{k}\right)$

Y is actually a dual certificate.

Lemma (Y is a dual certificate)

If for some
$\beta>\max \left\{1,1 /\left(4 \log \left(n_{1} n_{2}\right)\right), 1+\left(\log 2 / \log \left(n_{1} n_{2}\right)\right)\right\}$,

$$
\begin{equation*}
p \geq \min \left\{1, \max \left\{\frac{1}{n_{1} n_{2}}, p_{\min }^{\mathrm{F}}, p_{\min }^{\mathrm{op}, 1}, p_{\min }^{\mathrm{op}, 2}, p_{\min }^{\infty}\right\}\right\} \tag{4}
\end{equation*}
$$

is satisfied, then the matrix $\mathbf{Y} \in \mathbb{R}^{n_{1} \times n_{2}}$ defined by Def. 14 is a dual certificate (Def. 12) with probability at least
$1-k_{0}\left(e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}+2\left(n_{1} n_{2}\right)^{1-\beta}+\left(n_{1}+n_{2}\right)^{1-\beta}\right)$.

Proof (Y is a dual certificate)

(Proof)

- By construction, we have $\mathbf{Y} \in \operatorname{range} \mathcal{P}_{\Omega}^{*}$.
- From here, we show the other two conditions of the dual certificate.
- In the proof, we will use Prop. 1 below.

Proof (Y is a dual certificate) (cont.) 55

Prop.

$$
\rho_{\mathrm{op}} \geq\left\|\mathbf{U V}^{\top}\right\|_{\infty}\left(\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U} \mathbf{V}^{\top}\right\|_{\infty}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\mathrm{op}}}{\|\mathbf{Z}\|_{\infty}}\right)
$$

Also, by concentration inequalities, we can prove

Proof (Y is a dual certificate) (cont.) ${ }_{56}$

Concentration inequalities

1. $\left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}$
2. $\left\|\left(\mathcal{R}_{\Omega_{k}}^{*}-\mathcal{P}^{*}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\mathrm{op}} \leq\left(\frac{1}{4}-\rho_{\mathrm{op}}\right) \frac{1}{\left\|\mathbf{U V}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
3. $\left\|\left(\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\infty} \leq\left(\frac{1}{2}-\rho_{\infty}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
hold with the probability specified in the statement of the theorem.

We trust these inequalities here.
[Upper bounding $\left\|\mathbf{U V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}}$]

Proof (Y is a dual certificate) (cont.) 57

We confirm by recursion that if Eq. (8) holds for all $k \in\left[k_{0}\right]$, then we have $\left\|\mathcal{P}_{T} \Delta_{k}\right\|_{\mathrm{F}} \leq\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}}$. First, we have $\left\|\mathcal{P}_{T} \Delta_{0}\right\|_{\mathrm{F}}=\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}}$. Second, if $\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}}$, then
$\left\|\mathcal{P}_{T} \Delta_{k}\right\|_{\mathrm{F}}=\left\|\mathcal{P}_{T}\left(\mathbf{U V}^{\top}-\mathbf{W}_{k}\right)\right\|_{\mathrm{F}}$ $=\left\|\mathbf{U} \mathbf{V}^{\top}-\mathcal{P}_{T} \mathbf{W}_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}$ $\leq\left\|\mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}+\left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|$ $\leq \rho_{\mathrm{F}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}+\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}$ $=\frac{1}{2}\left\|\boldsymbol{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}}$

Proof (Y is a dual certificate) (cont.)

Now, by the same recursion formula, we can show $\left\|\mathcal{P}_{T} \Delta_{k_{0}}\right\|_{\mathrm{F}} \leq\left(\frac{1}{2}\right)^{k_{0}}\left\|\mathcal{P}_{T} \Delta_{0}\right\|_{\mathrm{F}}$. Therefore, under the condition Eq. (4), by the union bound, we have Eq. (8) for all $k \in\left[k_{0}\right]$ with probability at least
$1-k_{0} e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}$ and

$$
\begin{aligned}
\left\|\mathbf{U V}^{\top}-\mathcal{P}_{T} \mathbf{Y}\right\|_{\mathrm{F}}=\left\|\mathcal{P}_{T} \Delta_{k_{0}}\right\|_{\mathrm{F}} & \leq\left(\frac{1}{2}\right)^{k_{0}}\left\|\mathcal{P}_{T} \Delta_{0}\right\|_{\mathrm{F}} \\
& \leq \sqrt{\frac{1}{n_{1} n_{2} r}} \frac{1}{2 \sqrt{2}}\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}} \\
& \leq \sqrt{\frac{p}{r}} \frac{1}{2 \sqrt{2}}\left\|\mathbf{U V}^{\top}\right\|_{\mathrm{F}} \\
& =\sqrt{\frac{p}{r}} \frac{1}{2 \sqrt{2}} \sqrt{r}
\end{aligned}
$$

Proof (Y is a dual certificate) (cont.)

because $k_{0}=\left\lceil\log _{2}\left(2 \sqrt{2} \sqrt{n_{1} n_{2} r}\right)\right\rceil$, where we used $\frac{1}{n_{1} n_{2}} \leq p$.
[Upper bounding $\left\|\mathcal{P}_{T^{\perp}} \mathbf{Y}\right\|_{\text {op }}$]
By a similar argument of recursion as above with
Eq. (??) in Lemma ??, we can prove that for all $k \in\left[k_{0}\right]$, $\left\|\mathcal{P}_{T} \Delta_{k}\right\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}$ and $\left\|\mathcal{P}_{T} \Delta_{k}\right\|_{\infty} \leq \frac{1}{2}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$, with probability at least $1-k_{0} 2\left(n_{1} n_{2}\right)^{1-\beta}$ under the condition Eq. (4). Similarly, with Eq. ?? in Lemma ?? and using Prop. 1 , we obtain for all $k \in\left[k_{0}\right]$, $\left\|\left(\mathcal{R}_{\Omega_{k}}^{*}-\mathcal{I}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\text {op }} \leq \frac{1}{4\left\|\mathrm{UV}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$, with

Proof (Y is a dual certificate) (cont.)

probability at least $1-k_{0}\left(n_{1}+n_{2}\right)^{1-\beta}$ under the condition Eq. (4). Therefore, under the condition Eq. (4), with probability at least $1-k_{0}\left(2\left(n_{1} n_{2}\right)^{1-\beta}+\left(n_{1}+n_{2}\right)^{1-\beta}\right)$, we have

$$
\begin{aligned}
\left\|\mathcal{P}_{T^{\perp}} Y\right\|_{\mathrm{op}} & =\left\|\mathcal{P}_{T^{\perp}} \sum_{k=1}^{k_{0}} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}\left(\Delta_{k-1}\right)\right\|_{\mathrm{op}} \\
& \leq \sum_{k=1}^{k_{0}}\left\|\mathcal{P}_{T^{\perp}} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}\left(\Delta_{k-1}\right)\right\|_{\mathrm{op}} \\
& =\sum_{k=1}^{k_{0}}\left\|\mathcal{P}_{T^{\perp}} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}\left(\Delta_{k-1}\right)-\mathcal{P}_{T^{\perp}} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{op}}
\end{aligned}
$$

Proof (Y is a dual certificate) (cont.)

$$
\begin{aligned}
& \leq \sum_{k=1}^{k_{0}}\left\|\left(\mathcal{R}_{\Omega_{k}}^{*}-\mathcal{I}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\mathrm{op}} \\
& \leq \sum_{k=1}^{k_{0}} \frac{1}{4\left\|\mathbf{U V}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty} \\
& \leq \sum_{k=1}^{k_{0}} 2^{-k+1} \frac{1}{4\left\|\mathbf{U V}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{0}\right\|_{\infty} \\
& <\frac{1}{2}
\end{aligned}
$$

By taking the union bound, we have the lemma.

Lemma Used in the Proof (Y is a dual certificate)

In the recursion formula, we have used the following property yielding from the definition of ρ_{op} (Def. 5).

Prop.

$$
\rho_{\mathrm{op}} \geq\left\|\mathbf{U} \mathbf{V}^{\top}\right\|_{\infty}\left(\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\mathrm{op}}}{\|\mathbf{Z}\|_{\infty}}\right)
$$

Proof (Lemma Used in the Proof)

(Proof)

- We have $\left\{\mathbf{Z} \in T:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}\right\} \subset\{\mathbf{Z} \in T$: $\left.\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\text {op }}\right\}$,
- because if $\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}$, then we can obtain
$\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\|\mathbf{Z}\|_{\infty} \leq \sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\infty} \leq$ $\sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\text {op }}$.
- (Here, we used $\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\|\mathbf{Z}\|_{\infty}$ and $\left.\|\mathbf{Z}\|_{\infty} \leq\|\mathbf{Z}\|_{\text {op }}\right)$.

Proof (Lemma Used in the Proof) (cont.) 64

- Therefore,

$$
\begin{aligned}
& \rho_{\mathrm{op}}=\sqrt{r} \mu_{1}\left(\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\text {op }}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\text {op }}}{\|\mathbf{Z}\|_{\text {op }}}\right) \\
& =\sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\infty}\left(\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\text {op }} \leq \sqrt{n_{1} n_{2}}\left\|\mathbf{U V}^{\top}\right\|_{\text {op }}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\text {op }}}{\|\mathbf{Z}\|_{\text {op }}}\right) \\
& \geq\left\|\mathbf{U V}^{\top}\right\|_{\infty}\left(\sup _{\mathbf{z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U V}^{\top}\right\|_{\infty}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\text {op }}}{\frac{1}{\sqrt{n_{1} n_{2}}}\|\mathbf{Z}\|_{\text {op }}}\right) \\
& \geq\left\|\mathbf{U V}^{\top}\right\|_{\infty}\left(\sup _{\mathbf{Z} \in T \backslash\{\mathbf{O}\}:\|\mathbf{Z}\|_{\infty} \leq\left\|\mathbf{U} \mathbf{V}^{\top}\right\|_{\infty}} \frac{\left\|\mathcal{P}^{*} \mathbf{Z}-\mathbf{Z}\right\|_{\mathrm{op}}}{\|\mathbf{Z}\|_{\infty}}\right) \text {. }
\end{aligned}
$$

Coffee break

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

- Many concentration inequalities are shown for reference.
- In this talk, only the vector Bernstein inequality will be used.

Matrix Bernstein inequality

Theorem (Matrix Bernstein inequality [7])

Let $\left\{\mathbf{Z}_{k}\right\}_{k=1}^{L}$ be independent random matrices with dimensions $d_{1} \times d_{2}$. If $\mathbb{E}\left(\mathbf{Z}_{k}\right)=\mathbf{O}$ and $\left\|\mathbf{Z}_{k}\right\|_{\text {op }} \leq R$ (a.s.), then define $\sigma^{2}:=$ $\max \left\{\left\|\sum_{k=1}^{L} \mathbb{E}\left(\mathbf{Z}_{k}^{\top} \mathbf{Z}_{k}\right)\right\|_{\text {op }},\left\|\sum_{k=1}^{L} \mathbb{E}\left(\mathbf{Z}_{k} \mathbf{Z}_{k}^{\top}\right)\right\|_{\mathrm{op}}\right\}$. Then for all $t \in\left[0, \frac{\sigma^{2}}{R}\right]$,

$$
\mathcal{P}\left\{\left\|\sum_{k=1}^{L} \mathbf{Z}_{k}\right\|_{\mathrm{op}} \geq t\right\} \leq\left(d_{1}+d_{2}\right) \exp \left(\frac{-\frac{3}{8} t^{2}}{\sigma^{2}}\right)
$$

holds.

Matrix Bernstein inequality (cont.)

Theorem (Matrix Bernstein inequality [7])

Therefore, if

$$
\begin{equation*}
\sqrt{\frac{8}{3}\left(\log \frac{d_{1}+d_{2}}{\delta}\right) \sigma^{2}} \leq \frac{\sigma^{2}}{R} \tag{5}
\end{equation*}
$$

then with probability at least $1-\delta$,

$$
\left\|\sum_{k=1}^{L} \mathbf{Z}_{k}\right\|_{\mathrm{op}} \leq \sqrt{\frac{8}{3}\left(\log \frac{d_{1}+d_{2}}{\delta}\right) \sigma^{2}}
$$

holds.

Vector Bernstein inequality

Theorem (Vector Bernstein inequality [4])

Let $\left\{\boldsymbol{v}_{k}\right\}_{k=1}^{L}$ be independent random vectors in \mathbb{R}^{d}.
Suppose that $\mathbb{E} \boldsymbol{v}_{k}=\boldsymbol{o}$ and $\left\|\boldsymbol{v}_{k}\right\| \leq R$ (a.s.) and put $\sum_{k=1}^{L} \mathbb{E}\left\|\boldsymbol{v}_{k}\right\|^{2} \leq \sigma^{2}$. Then for all $t \in\left[0, \frac{\sigma^{2}}{R}\right]$,

$$
\mathbb{P}\left(\left\|\sum_{k=1}^{L} \boldsymbol{v}_{k}\right\| \geq t\right) \leq \exp \left(-\frac{(t / \sigma-1)^{2}}{4}\right) \leq \exp \left(-\frac{t^{2}}{8 \sigma^{2}}+\frac{1}{4}\right)
$$

holds.

Vector Bernstein inequality (cont.)

Theorem (Vector Bernstein inequality [4])

Therefore, given

$$
\begin{equation*}
\sigma \sqrt{2+8 \log \frac{1}{\delta}} \leq \frac{\sigma^{2}}{R} \tag{6}
\end{equation*}
$$

with probability at least $1-\delta$,

$$
\left\|\sum_{k=1}^{L} \boldsymbol{v}_{k}\right\| \leq \sigma \sqrt{2+8 \log \frac{1}{\delta}}
$$

holds.

Scalar Bernstein inequality

Theorem (Bernstein's inequality for scalars [1, Corollary 2.11])

Let X_{1}, \ldots, X_{n} be independent real-valued random variables that satisfy $\left|X_{i}\right| \leq R$ (a.s.), $\mathbb{E}\left[X_{i}\right]=0$, and $\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right] \leq \sigma^{2}$. Then for all $t \in\left[0, \frac{\sigma^{2}}{R}\right]$,

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{n} X_{i}\right| \geq t\right\} \leq 2 \exp \left(-\frac{\frac{3}{8} t^{2}}{\sigma^{2}}\right) .
$$

holds.

Scalar Bernstein inequality (cont.)

Theorem (Bernstein's inequality for scalars [1,
Corollary 2.11])
Therefore, given

$$
\begin{equation*}
\sqrt{\frac{8}{3} \sigma^{2} \log \frac{2}{\delta}} \leq \frac{\sigma^{2}}{R} \tag{7}
\end{equation*}
$$

with probability at least $1-\delta$,

$$
\left|\sum_{i=1}^{n} X_{i}\right| \leq \sqrt{\frac{8}{3} \sigma^{2} \log \frac{2}{\delta}} .
$$

holds.

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Concentration properties

From here, we denote $P_{i j}^{*}(\cdot):=\left(\mathcal{P}^{*}(\cdot)\right)_{i j}$. We need to prove the following concentrations.

1. $\left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}$
2. $\left\|\left(\mathcal{R}_{\Omega_{k}}^{*}-\mathcal{P}^{*}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\text {op }} \leq\left(\frac{1}{4}-\rho_{\text {op }}\right) \frac{1}{\left\|\mathbf{U V}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
3. $\left\|\left(\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\infty} \leq\left(\frac{1}{2}-\rho_{\infty}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
4. $\left\|\mathcal{P}_{T} \mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}\right\|_{\mathrm{op}} \leq \frac{1}{2}-\nu_{\mathcal{B}}$

We will prove only 1 . here.

Frobenius norm concentration (cont.)

Lemma (Frobenius norm concentration)

Assume that $\rho_{\mathrm{F}}<\frac{1}{2}$, and that for some $\beta>1 /\left(4 \log \left(n_{1} n_{2}\right)\right)$,

$$
p \geq \min \left\{1, p_{\min }^{\mathrm{F}}\right\},
$$

is satisfied. Let $k \in\left\{1, \ldots, k_{0}\right\}$. Then, given $\mathcal{P}_{T} \Delta_{k-1}$ that is independent of Ω_{k}, we have, w.p.

$$
\geq 1-e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}
$$

$$
\begin{equation*}
\left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \tag{8}
\end{equation*}
$$

Proof (Frobenius norm concentration)

Before moving on to the proof, let us note the following property of coherence to be used in the proof.

Prop.

$$
\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \leq \frac{n_{1}+n_{2}}{n_{1} n_{2}} \mu_{0} r
$$

Proof (Frobenius norm concentration) (cont.)

Proof.

$$
\begin{aligned}
\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} & =\left\|\mathcal{P}_{\mathrm{U}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}+\left\|\mathcal{P}_{\mathrm{V}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}-\left\|\mathcal{P}_{\mathrm{U}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}\left\|\mathcal{P}_{\mathrm{V}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \\
& \leq\left\|\mathcal{P}_{\mathrm{U}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}+\left\|\mathcal{P}_{\mathrm{V}}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \\
& \leq \frac{n_{1}+n_{2}}{n_{1} n_{2}} \mu_{0} r .
\end{aligned}
$$

Proof (Frobenius norm concentration) (cont.)

Note that since $(1-p)^{1 / k_{0}} \leq 1-\left(1 / k_{0}\right) p$, it follows that $q \geq\left(1 / k_{0}\right) p$. We will repeatedly use this relation in proving concentration properties.

Proof (Frobenius norm concentration)

(Proof)

- If $p=1$, then we have $q=1$, therefore Eq. (8) holds.

Thus, from here, we assume $1 \geq p \geq p_{\min }^{\mathrm{F}}$.

- First decompose $\left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}$ as

$$
\begin{aligned}
& \left\|\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T} \Delta_{k-1}-\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \\
& =\left\|\mathcal{P}_{T} \sum_{(i, j)}\left(1-\frac{\omega_{i j}^{(k)}}{q}\right) P_{i j}^{*}\left(\left\langle e_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\right) e_{i} \boldsymbol{f}_{j}^{\top}\right\|_{\mathrm{F}} \\
& =\left\|\sum_{(i, j)}\left(1-\frac{\omega_{i j}^{(k)}}{q}\right) P_{i j}^{*}\left(\left\langle e_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\right) \mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}} \\
& =:\left\|\mathbf{S}_{i j}\right\| .
\end{aligned}
$$

Proof (Frobenius norm concentration) (cont.)

- From here, we check the conditions for the vector Bernstein inequality (Theorem 19).

Now it is easy to verify that $\mathbb{E}\left[\mathbf{S}_{i j}\right]=\mathbf{O}$. We also have

$$
\begin{aligned}
\left\|\mathbf{S}_{i j}\right\|_{\mathrm{F}} & =\left(1-\frac{\omega_{i j}^{(k)}}{q}\right)\left|P_{i j}^{*}\left(\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\right)\right|\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}} \\
& \left.\leq \frac{1}{q} \right\rvert\,\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\| \| \mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right) \|_{\mathrm{F}} \\
& \leq \frac{1}{q}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \\
& \leq \frac{1}{q} \frac{n_{1}+n_{2}}{n_{1} n_{2}} \mu_{0} r\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} .
\end{aligned}
$$

Proof (Frobenius norm concentration) (cont.)

On the other hand,

$$
\begin{aligned}
\sum_{(i, j)} \mathbb{E}\left\|\mathbf{S}_{i j}\right\|_{\mathrm{F}}^{2} & =\sum_{(i, j)} \mathbb{E}\left[\left(1-\frac{\omega_{i j}^{(k)}}{q}\right)^{2}\right] P_{i j}^{*}\left(\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\right)^{2}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \\
& =\frac{1-q}{q} \sum_{(i, j)} P_{i j}^{*}\left(\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle\right)^{2}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \\
& \leq \frac{1-q}{q} \sum_{(i, j)}\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle^{2}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2} \\
& \leq \frac{1-q}{q} \max _{(i, j)}\left\{\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}\right\} \sum_{(i, j)}\left\langle\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}, \mathcal{P}_{T} \Delta_{k-1}\right\rangle^{2} \\
& =\frac{1-q}{q} \max _{(i, j)}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Proof (Frobenius norm concentration) (cont.)

$$
\begin{aligned}
& \leq \frac{1}{q} \max _{(i, j)}\left\|\mathcal{P}_{T}\left(\boldsymbol{e}_{i} \boldsymbol{f}_{j}^{\top}\right)\right\|_{\mathrm{F}}^{2}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}^{2} \\
& =\frac{1}{q}\left(\frac{n_{1}+n_{2}}{n_{1} n_{2}} \mu_{0} r\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Let
$R:=\frac{n_{1}+n_{2}}{q n_{1} n_{2}} \mu_{0} r\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}, \sigma^{2}:=\frac{n_{1}+n_{2}}{q n_{1} n_{2}} \mu_{0} r\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}^{2}$, and $\delta=e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}$. Under the condition

$$
q \geq \frac{p}{k_{0}} \geq \frac{p_{\min }^{\mathrm{F}}}{k_{0}}=\frac{8 \mu_{0} r}{\left(1 / 2-\rho_{\mathrm{F}}\right)^{2}} \beta \log \left(n_{1} n_{2}\right) \frac{n_{1}+n_{2}}{n_{1} n_{2}}
$$

Proof (Frobenius norm concentration) (cont.)

the condition (6) of Theorem 19 is satisfied, because

$$
\begin{aligned}
\sqrt{\left(2+8 \log \frac{1}{\delta}\right) \sigma^{2}} & =\sqrt{8 \beta \log \left(n_{1} n_{2}\right) \frac{n_{1}+n_{2}}{q n_{1} n_{2}} \mu_{0} r\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}} \\
& \leq\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}} \leq\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}=\frac{\sigma^{2}}{R} .
\end{aligned}
$$

Therefore, applying Theorem 19 with $d=n_{1} n_{2}$, we obtain

$$
\left\|\sum_{(i, j)} \mathbf{S}_{i j}\right\|_{\mathrm{F}} \leq \sqrt{\left(2+8 \log \frac{1}{\delta}\right) \sigma^{2}} \leq\left(\frac{1}{2}-\rho_{\mathrm{F}}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\mathrm{F}}
$$

Proof (Frobenius norm concentration) (cont.)

with probability at least $1-e^{\frac{1}{4}}\left(n_{1} n_{2}\right)^{-\beta}$.

Other concentration inequalities

For the concentration of

- $\left\|\left(\mathcal{R}_{\Omega_{k}}^{*}-\mathcal{P}^{*}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\text {op }} \leq\left(\frac{1}{4}-\rho_{\text {op }}\right) \frac{1}{\left\|\mathbf{U V}^{\top}\right\|_{\infty}}\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
- $\left\|\left(\mathcal{P}_{T} \mathcal{R}_{\Omega_{k}}^{*} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}^{*} \mathcal{P}_{T}\right)\left(\mathcal{P}_{T} \Delta_{k-1}\right)\right\|_{\infty} \leq\left(\frac{1}{2}-\rho_{\infty}\right)\left\|\mathcal{P}_{T} \Delta_{k-1}\right\|_{\infty}$
- $\left\|\mathcal{P}_{T} \mathcal{R}_{\Omega} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{P}_{\mathcal{B}} \mathcal{P}_{T}\right\|_{\text {op }} \leq \frac{1}{2}-\nu_{\mathcal{B}}$
please refer to the paper (they are similar but require different calculations).

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

Proof of Theorem thm:exact-recovery-guarantee

Proof.

The theorem immediately follows from the combination of Lemma 13, Lemma ??, Lemma 15, and the union bound.

Motivation and Problem Setting
Our Problem Setting: Clipped Matrix Completion
Quantities required for the statement
Preliminary for the Proof
Proof Part 0: Proof Strategy
Proof Part 1: Main Lemma
Proof Part 2: Existence of Dual Certificate
Concentration Inequalities
Proof Part 3: Auxiliary Lemma (Concentration Inequalities)
Proof Final Part: Combining all
References

References

[1] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart.
Concentration Inequalities: A Nonasymptotic Theory of Independence.
Oxford University Press, Oxford, 1st edition, 2013.
[2] Emmanuel J. Candès and Benjamin Recht.
Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6):717, 2009.
[3] Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward.
Completing any low-rank matrix, provably. Journal of Machine Learning Research, 16:2999-3034, 2015.

References (cont.)

[4] David Gross.
Recovering low-rank matrices from few coefficients in any basis.
IEEE Transactions on Information Theory, 57(3):1548-1566, March 2011.
[5] B. Recht, M. Fazel, and P. Parrilo.
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.
SIAM Review, 52(3):471-501, January 2010.

References (cont.)

[6] Takeshi Teshima, Miao Xu, Issei Sato, and Masashi Sugiyama. Clipped Matrix Completion: A Remedy for Ceiling Effects.
arXiv:1809.04997 [cs, stat], September 2018.
[7] Joel A. Tropp.
User-friendly tail bounds for sums of random matrices.
Foundations of Computational Mathematics, 12(4):389-434, August 2012.

