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Ceiling Effect 1

Ceiling effect

Measurement limitation that observations are clipped

at a threshold at the time of observation.
• Ex. Questionnaire • Too many people answer

with “5” (max value).
• ⇒ questionnaire may

not be measuring the

domain correctly.

• There may exist some

more variation within

“5”.



Ceiling Effect in ML Benchmark 2

0 1 2 3 4 5 6 7
0.0

0.2

Movielens 100K

Rating

P
ro
ba
bi
lit
y

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

FilmTrust

Rating

P
ro
ba
bi
lit
y

Figure 1: Histograms of benchmark recommendation systems data.

• Right-truncated histogram · · · typical for variable
under ceiling effects.



Matrix Completion (MC) 3

• Recover matrix from missing, noise, etc.



MC: example application 4

• Movie recommendation



MC: Why would it ever work? 5

• Assume the matrix has a low rank.

• Principle of low-rank completion

• Low-rank = few latent factors dominate.

• Estimate the latent vectors, then one can impute

values.



MC: The algorithm 6

We want to do

Rank minimization

minX∈Rn1×n2 rank(X) s.t. (X complies with observation)

However, rank minimization is intractable. Instead:

Trace-norm minimization

minX∈Rn1×n2 ∥X∥∗ s.t. (X complies with observation)

• Rank is count
∑

k 1{σk > 0}, Trace-norm is sum∑
k σk.

• By [2], trace-norm minimization was given a

guarantee that “M̂ completely recovers M.”
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Problem of Clipped Matrix Completion 7

• M ∈ Rn1×n2: the ground-truth matrix.

• C ∈ R: the clipping threshold.

• Clip(·) := min{C, ·}: the clipping operator

(element-wise).

• Mc := Clip(M): full clipped matrix.

• Ω: the random set of observed indices (details later).

Problem (Clipped matrix completion (CMC))

Accurately recover M from Mc
Ω := {M c

ij}(i,j)∈Ω and C.



Illustration of CMC 8

8 13 6 9 4
2 6 7 16 12
4 6 2 2 0
0 3 6 15 12
4 7 4 7 4

(a) True matrix M

8 10 6 9 4
2 6 7 10 10
4 6 2 2 0
0 3 6 10 10

7 4 7 4

(b) Observed Mc
Ω

8.0 13.0 6.0 9.0 4.0
2.0 6.0 7.0 15.9 11.9
4.0 6.0 2.0 2.0 0.0
­0.0 3.0 6.0 14.9 11.9
4.0 7.0 4.0 7.0 4.0

(c) Restored M̂

Figure 2: The true low-rank matrix M has a distinct structure of

large values. However, the observed data Mc
Ω is clipped at a

predefined threshold C = 10. The goal of CMC is to restore M

from the value of C and Mc
Ω. The restored matrix M̂ is an actual

result of applying a proposed method (Fro-CMC).



Trace-norm minimization for CMC 9

Trace-norm minimization for CMC

M̂ ∈ arg min
X∈Rn1×n2

∥X∥tr s.t.
{
PΩ\C(X) = PΩ\C(M

c),
PC(M

c) ≤ PC(X). (1)

• Research question: can we prove M̂ = M (w.h.p.)?



Rough statement of the main theorem 10

Rough statement of the theorem

Assume

• M has nice properties (small information loss by

clipping, incoherent, low-rank)

• observations are independent with probability p.

• p is large enough

Then, M̂ = M with high probability.

CMC is feasible under a sufficient condition!



Coffee break 11
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Quantities required for the statement 12

We need to define

• Coherence of M

• Information loss of M



Quantity 1: Coherence 13

Definition (Leverage scores [3])

Let X ∈ Rn1×n2 have a skinny singular value

decomposition X = ŨΣ̃Ṽ⊤. We define

µU(X) := max
i∈[n1]

∥Ũi,·∥2, µV(X) := max
j∈[n2]

∥Ṽj,·∥2,

where Ũi,· (Ṽj,·) is the i-th (resp. j-th) row of Ũ

(resp. Ṽ).

• These are used to define the coherence of M.



Quantity 1: Coherence (cont.) 14

Definition (Coherence and joint coherence [3])

Now the coherence of M is defined by

µ0 := max
{n1

r
µU(M),

n2

r
µV(M)

}
.

In addition, we define the following joint coherence:

µ1 :=

√
n1n2

r
∥UV⊤∥∞.



What does coherence mean? 15

• Note

∥Ui,·∥2 =
∑
k

⟨U·,k, ei⟩2

= ∥
∑
k

U·,k⟨U·,k, ei⟩∥2

= ∥UU⊤ei∥2

= ∥PU (ei)∥2,

where U := Span(u1, . . . , ur).

• Therefore, a small coherence implies that there is no
element in U that is “aligned” with ei.

• In other words, no element in U are too sparse.



What does coherence mean? (cont.) 16

• As a result, the components ukv
⊤
k that M is composed of

(as M = UΣV⊤) cannot be sparse.

• The condition that coherence is small excludes the

possibility that M is “spiky”.

• The condition of M being low-rank is not enough to
guarantee recovery.

• e.g., a matrix with only the 1, 1-entry being one and all

others being zeros is also rank-one.

• Incoherence condition (coherence being small) excludes

such a possibility.



What does coherence mean? (cont.) 17

• Spiky matrix is possible when there is a sparse

component ukv
⊤
k .

• Sparsity of ukv
⊤
k means that there is a sparse uk or

vk.
• Let’s say uk is sparse.

• Then, considering the normalization property of U

(column vectors are normalized to norm-one), there must

be a gathered mass in some dimension i of uk.



Quantity 2: The information subspace 18

• We will define the information subspace T of M.

• T is important because. . .
1. M ∈ T .

2. T is used for explicit expression of ∂∥M∥tr.

• Let M = UΣV⊤. Then UV⊤ ∈ T and

∂∥M∥tr = {W +UV⊤ : W ∈ T⊥, ∥W∥op ≤ 1}.
• UV⊤ ∈ T .

• The feasibility of recovery depends upon the amount

of information we have about T .



Quantity 2: The information subspace
(cont.) 19

Definition (The information subspace of M [2])

• M = UΣV⊤: skinny singular value decomposition

(SVD) (U ∈ Rn1×r,Σ ∈ Rr×r and V ∈ Rn2×r).

• Define the information subspace of M by

T := span
(
{uky

⊤ : k ∈ [r],y ∈ Rn2} ∪ {xv⊤
k : k ∈ [r],x ∈ Rn1}

)
• where uk,vk are the k-th column of U and V (resp.).

• PT ,PT⊥: the projections onto T and T⊥, resp.



(Key) quantity 3: Information loss 20

• Using T , we capture the information loss.

• The loss are measured in three different norms:

∥ · ∥F, ∥ · ∥op, and ∥ · ∥tr.
• To express the factor of clipping, we define an

element-wise transformation P∗.

• P∗ describes the amount of information left after

clipping



(Key) quantity 3: Information loss (cont.)21

• In the theorem of exact recovery guarantee, we will

assume: information loss is small and enough

information is left by P∗.



(Key) quantity 3: Information loss (cont.)22

Definition (The information loss)

ρF := sup
Z∈T\{O}:∥Z∥F≤∥UV⊤∥F

∥PTP∗(Z)− Z∥F
∥Z∥F

,

ρ∞ := sup
Z∈T\{O}:∥Z∥∞≤∥UV⊤∥∞

∥PTP∗(Z)− Z∥∞
∥Z∥∞

,

ρop :=
√
rµ1

 sup
Z∈T\{O}:

∥Z∥op≤
√
n1n2∥UV⊤∥op

∥P∗(Z)− Z∥op
∥Z∥op

 ,

(P∗(Z))ij =

{
Zij if Mij < C,
max{Zij , 0} if Mij = C,
0 otherwise.



(Key) quantity 4: The importance of B 23

• Another quantity νB to measure the information loss

is required.

• If this quantity is small, enough information of T may

be left in non-clipped entries.

Definition (The importance of clipped entries)

Define

νB := ∥PTPBPT − PT ∥op,

where B := {(i, j) : Mij < C}.



Assumption on the observation scheme 24

Assumption (Assumption on the observation

scheme)

• p ∈ [0, 1], k0 :=
⌈
log2(2

√
2
√
n1n2r)

⌉
, and

q := 1− (1− p)1/k0.

• For each k = 1, . . . , k0,
• Ωk ⊂ [n1]× [n2]: a random set of matrix indices such that

• sampled according to P((i, j) ∈ Ωk) = q

• {(i, j) ∈ Ωk} are all independent.

• Then, Ω was generated by Ω =
∪k0

k=1Ωk.

The need for Assumption 1 is technical [3].



The theorem 25

Theorem (Exact recovery guarantee for CMC)

Assume ρF < 1
2 , ρop <

1
4 , ρ∞ < 1

2 , νB < 1
2 , and

Assumption 1 for some p ∈ [0, 1]. For simplicity of the

statement, assume n1, n2 ≥ 2 and p ≥ 1
n1n2

. If,

additionally,

p ≥ min
{
1, cρ max(µ1

2, µ0)rf(n1, n2)
}

is satisfied, then. . .



The theorem (cont.) 26

Theorem (Exact recovery guarantee for CMC)

. . . the solution of Eq. (1) is unique and equal to M
with probability at least 1− δ, where

cρ = max

{
24

(1/2− ρF)2
,

8

(1/4− ρop)2
,

8

(1/2− ρ∞)2
,

8

(1/2− νB)2

}
,

f(n1, n2) = O
(
(n1 + n2)(log(n1n2))

2

n1n2

)
,

δ = O
(
log(n1, n2)

n1 + n2

)
(n1 + n2)

−1.



Coffee break 27
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Linear algebra and functional analysis 28

• Matrix inner product: ⟨X,Y⟩ =
∑

ij XijYij.

• Matrix norms:
• ∥X∥F :=

√
⟨X,X⟩

• ∥X∥tr :=
∑

k σk (σk: singular values)

• ∥X∥op := supv:∥v∥=1 ∥Xv∥



Linear algebra and functional analysis 29

• ∥ · ∥tr and ∥ · ∥op are dual.
• |⟨X,Y⟩| ≤ ∥X∥op∥Y∥tr

• Let S ⊂ Rn1×n2: subspace. For each Y ∈ S, there
exists X ∈ S such that

• ∥X∥op = 1

• ⟨X,Y⟩ = ∥X∥op∥Y∥tr
• X = UΣV⊤: (skinny) SVD. Then,

• UV⊤ ∈ T .

• ∂∥X∥tr = {W +UV⊤ : W ∈ T⊥, ∥W∥op ≤ 1}
(subgradients are (1) UV⊤ on T (2) small norm on T⊥).



Notation 30

• ωij := 1{(i, j) ∈ Ω}, ω(k)
ij := 1{(i, j) ∈ Ωk}

• RΩ := 1
p
PΩ,R

1
2
Ω := 1√

p
PΩ,RC := 1

p
PC, and RΩk

:= 1
q
PΩk

• Note: PΩ\C,PC,PΩ,RΩ,R
1
2
Ω are all self-adjoint.

• {ei}n1

i=1, {fj}n2

j=1: The standard bases of Rn1 and Rn2

(resp.).
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Detailed Form of the Theorem 31

Theorem 8 is a simplified version of the following.

Theorem

Assume ρF < 1
2 , ρop <

1
4 , ρ∞ < 1

2 , and νB < 1
2 , and

assume the independent and uniform sampling scheme

as in Assumption 1. If for some

β > max{1, 1/(4 log(n1n2)), 1 + (log 2/ log(n1n2))},

p ≥ min

{
1,max

{
1

n1n2
, pFmin, p

op,1
min , p

op,2
min , p

∞
min, p

main
min

}}
(2)

where. . .



Detailed Form of the Theorem (cont.) 32

Theorem

pFmin =
8k0µ0βr

(1/2− ρF)2
(n1 + n2) log(n1n2)

n1n2
,

pop,1min =
8k0β

3(1/4− ρop)2
log(n1 + n2)

max(n1, n2)
,

pop,2min =
8k0βrµ1

2

3(1/4− ρop)2
max(n1, n2) log(n1 + n2)

n1n2
,

p∞min =
8k0µ0rβ

3(1/2− ρ∞)2
(n1 + n2) log(n1n2)

n1n2
,

pmain
min =

8βrµ0

3(1/2− νB)2
(n1 + n2) log(n1n2)

n1n2
,

is satisfied, then. . .



Detailed Form of the Theorem (cont.) 33

Theorem

. . . the minimizer of Eq. (1) is unique and equal to M

with probability at least 1− k0(e
1
4 (n1n2)

−β +

2(n1n2)
1−β + (n1 + n2)

1−β)− 2(n1n2)
1−β.



Road map 34

1. We want to prove ∀M̂ ̸= M : ∥M̂∥tr > ∥M∥tr w.h.p.
2. To do so, we use ∂∥M∥tr.

• Let Z ∈ ∂∥M∥tr, then we can do

∥M̂∥tr ≥ ⟨Z, M̂−M⟩+ ∥M∥tr.
• ∂∥M∥tr has a known expression using UV⊤ and T⊥.

3. Then our objective becomes ⟨Z, M̂−M⟩ > 0.

• We actually use “approximate” subgradient Y for 3.
• This Y is called the dual certificate.



Road map 35

Main lemma (informal)

If Y: dual certificate exists, then ∥M̂∥tr > ∥M∥tr
unless M̂ = M.

Existence of dual certificate w.h.p. (informal)

1. Construct a candidate Y by golfing scheme.

2. Prove that Y is actually a dual certificate.
• based on concentration inequalities (Bernstein-type).
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Definition of dual certificate 36

Definition (Dual certificate)

We say that Y ∈ Rn1×n2 is a dual certificate if it

satisfies

1. Y ∈ rangeP∗
Ω

2. ∥UV⊤ − PTY∥F ≤
√
p

2
√
2

3. ∥PT⊥Y∥op < 1
2

By definition of P∗, we have ⟨PΩ(M
c −M),Y⟩ ≥ 0.



Main lemma 37

Given a dual certificate Y (and a little more condition),

we can have the following result.

Lemma (Main lemma)

Assume that

1. a dual certificate Y exists

2. ∥PTPΩPBPT − PTPBPT∥op ≤ 1
2 − νB.

Then, the minimizer of trace-norm minimization

(Eq. (1)) is unique and is equal to M.



Proof (Lemma 13) 38

(Proof)

• Note that M is in the feasibility set of Eq. (1).

• Let M̂ ∈ Rn1×n2 be another matrix (different from

M) in the feasibility set

• denote H := M̂−M.

• Since the trace-norm is dual to the operator norm [5,

Proposition 2.1],



Proof (Lemma 13) (cont.) 39

• there exists W ∈ T⊥ which satisfies ∥W∥op = 1 and

⟨W,PT⊥H⟩ = ∥PT⊥H∥tr.
• It is also known that by using this W, UV⊤ +W is

a subgradient of ∥ · ∥tr at M [2].

• Therefore, we can calculate



Proof (Lemma 13) (cont.) 40

∥M̂∥tr = ∥M+H∥tr
≥ ∥M∥tr + ⟨H,UV⊤ +W⟩
= ∥M∥tr + ⟨H,UV⊤ − PTY⟩+ ⟨H,W − PT⊥Y⟩+ ⟨H,Y⟩
≥ ∥M∥tr + ⟨PTH,UV⊤ − PTY⟩+ ⟨PT⊥H,W − PT⊥Y⟩+ ⟨H,Y⟩,

(3)

where we used the self-adjointness of the projection

operators, as well as UV⊤ ∈ T .

From here, we will bound each term in the rightmost

equation of Eq. (3).

[Lower-bounding ⟨H,Y⟩ with 0]



Proof (Lemma 13) (cont.) 41

We have ⟨H,Y⟩ ≥ ⟨Mc −M,Y⟩ ≥ 0, since

⟨H,Y⟩ − ⟨Mc −M,Y⟩ = ⟨M̂−Mc,Y⟩ = ⟨PΩ(M̂−Mc),Y⟩ ≥ 0

can be seen by considering the signs element-wise.

[Lower-bounding ⟨PT⊥H,PT⊥(W−Y)⟩ with ∥PT⊥H∥F]
We have

⟨PT⊥H,PT⊥(W −Y)⟩ = ∥PT⊥H∥tr − ⟨PT⊥H,PT⊥Y⟩
≥ (1− ∥PT⊥Y∥op)∥PT⊥H∥tr
≥ (1− ∥PT⊥Y∥op)∥PT⊥H∥F.



Proof (Lemma 13) (cont.) 42

[Lower-bounding ⟨PTH,UV⊤ − PTY⟩ with ∥PT⊥H∥F]
Now note

⟨PTH,UV⊤ − PTY⟩ ≥ −∥PTH∥F∥UV⊤ − PTY∥F,

• We go on to upper-bound ∥PTH∥F by ∥PT⊥H∥F.
• Note 0 = ∥R

1
2

ΩPBH∥F ≥
∥R

1
2

ΩPBPTH∥F − ∥R
1
2

ΩPBPT⊥H∥F.



Proof (Lemma 13) (cont.) 43

• Therefore, ∥R
1
2

ΩPBPTH∥F ≥ ∥R
1
2

ΩPBPT⊥H∥F.
Now

∥R
1
2

ΩPBPTH∥2F
= ⟨RΩPBPTH,PBPTH⟩
= ⟨RΩPBPTH,PTH⟩
= ∥PTH∥2F + ⟨PT (RΩPBPT − PT )PTH,PTH⟩
≥ ∥PTH∥2F − ∥PTRΩPBPT − PT ∥op∥PTH∥2F
≥ ∥PTH∥2F
− (∥PTRΩPBPT − PTPBPT ∥op + ∥PTPBPT − PT ∥op)∥PTH∥2F

≥
(
1−

(
1

2
− νB

)
− νB

)
∥PTH∥2F

=
1

2
∥PTH∥2F.



Proof (Lemma 13) (cont.) 44

On the other hand,

∥R
1
2

ΩPBPT⊥H∥F ≤ 1
√
p
∥PT⊥H∥F.

Therefore, we have

−∥PTH∥F ≥ −
√

2

p
∥PT⊥H∥F.

[Finishing the proof]



Proof (Lemma 13) (cont.) 45

Now we are ready to continue the calculation of Eq. (3)

as

∥M̂∥tr ≥ ∥M∥tr − ∥UV⊤ − PTY∥F∥PTH∥F + (1− ∥PT⊥Y∥op)∥PT⊥H∥F + 0

≥ ∥M∥tr − ∥UV⊤ − PTY∥F
√

2

p
∥PT⊥H∥F + (1− ∥PT⊥Y∥op)∥PT⊥H∥F

≥ ∥M∥tr +
(
1− ∥PT⊥Y∥op − ∥UV⊤ − PTY∥F

√
2

p

)
∥PT⊥H∥F

> ∥M∥tr +
(
1− 1

2
− 1

2

)
∥PT⊥H∥F

= ∥M∥tr.

Therefore, M is the unique minimizer of Eq. (1). □



What’s next? 46

From here, we will

• construct a candidate of dual certificate Y by golfing

scheme.

• and prove that Y is actually a dual certificate.



Coffee break 47
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Strategy 48

• Find a candidate of dual certificate Y by golfing
scheme.

• Golfing scheme is like a theoretical SGD.

• We then prove that Y is actually a dual certificate.
• The proof uses concentration inequalities and information

loss.



Definition of the generalized golfing
scheme 49

Definition (Generalized golfing scheme)

We recursively define {Wk}k0k=0 by{
W0 : = O
∆k : = UV⊤ −Wk
Wk : = Wk−1 +R∗

Ωk
PT∆k−1 = UV⊤ − (I −R∗

Ωk
PT )∆k−1

where R∗
Ωk
(·) := RΩk

(P∗(·)), and define Y := Wk0.

• The idea: next slide



The idea of golfing scheme 50

• Wk := Wk−1 +R∗
Ωk
PT∆k−1 (∆k := UV⊤ −Wk)

• Goal: approximate UV⊤ on T while keeping small

∥PT⊥ · ∥op.



The idea of golfing scheme 51

• Wk := Wk−1 +R∗
Ωk
PT∆k−1 (∆k := UV⊤ −Wk)



The idea of golfing scheme 52

• Wk := Wk−1 +R∗
Ωk
PT∆k−1 (∆k := UV⊤ −Wk)



Y is actually a dual certificate. 53

Lemma (Y is a dual certificate)

If for some

β > max{1, 1/(4 log(n1n2)), 1 + (log 2/ log(n1n2))},

p ≥ min

{
1,max

{
1

n1n2
, pFmin, p

op,1
min , p

op,2
min , p

∞
min

}}
(4)

is satisfied, then the matrix Y ∈ Rn1×n2 defined by

Def. 14 is a dual certificate (Def. 12) with probability

at least

1− k0(e
1
4 (n1n2)

−β + 2(n1n2)
1−β + (n1 + n2)

1−β).



Proof (Y is a dual certificate) 54

(Proof)

• By construction, we have Y ∈ rangeP∗
Ω.

• From here, we show the other two conditions of the

dual certificate.

• In the proof, we will use Prop. 1 below.



Proof (Y is a dual certificate) (cont.) 55

Prop.

ρop ≥ ∥UV⊤∥∞

(
sup

Z∈T\{O}:∥Z∥∞≤∥UV⊤∥∞

∥P∗Z− Z∥op
∥Z∥∞

)

Also, by concentration inequalities, we can prove



Proof (Y is a dual certificate) (cont.) 56

Concentration inequalities

1. ∥PTP∗PT∆k−1 − PTR∗
Ωk
PT∆k−1∥F ≤

(
1
2
− ρF

)
∥PT∆k−1∥F

2. ∥(R∗
Ωk

− P∗)(PT∆k−1)∥op ≤
(
1
4
− ρop

)
1

∥UV⊤∥∞∥PT∆k−1∥∞

3. ∥(PTR∗
Ωk
PT −PTP∗PT )(PT∆k−1)∥∞ ≤

(
1
2
− ρ∞

)
∥PT∆k−1∥∞

hold with the probability specified in the statement of

the theorem.

We trust these inequalities here.

[Upper bounding ∥UV⊤ − PTY∥F]
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We confirm by recursion that if Eq. (8) holds for all

k ∈ [k0], then we have ∥PT∆k∥F ≤ ∥UV⊤∥F. First, we
have ∥PT∆0∥F = ∥UV⊤∥F. Second, if
∥PT∆k−1∥F ≤ ∥UV⊤∥F, then

∥PT∆k∥F = ∥PT (UV⊤ −Wk)∥F
= ∥UV⊤ − PTWk−1 − PTR∗

Ωk
PT∆k−1∥F

≤ ∥PT∆k−1 − PTP∗PT∆k−1∥F + ∥PTP∗PT∆k−1 − PTR∗
Ωk

PT∆k−1∥F

≤ ρF∥PT∆k−1∥F +

(
1

2
− ρF

)
∥PT∆k−1∥F

=
1

2
∥PT∆k−1∥F ≤ ∥UV⊤∥F
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Now, by the same recursion formula, we can show

∥PT∆k0∥F ≤
(
1
2

)k0 ∥PT∆0∥F. Therefore, under the
condition Eq. (4), by the union bound, we have Eq. (8)

for all k ∈ [k0] with probability at least

1− k0e
1
4 (n1n2)

−β and

∥UV⊤ − PTY∥F = ∥PT∆k0
∥F ≤

(
1

2

)k0

∥PT∆0∥F

≤
√

1

n1n2r

1

2
√
2
∥UV⊤∥F

≤
√

p

r

1

2
√
2
∥UV⊤∥F

=

√
p

r

1

2
√
2

√
r

=

√
p

2
√
2
.
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because k0 =
⌈
log2(2

√
2
√
n1n2r)

⌉
, where we used

1
n1n2

≤ p.

[Upper bounding ∥PT⊥Y∥op]
By a similar argument of recursion as above with

Eq. (??) in Lemma ??, we can prove that for all k ∈ [k0],

∥PT∆k∥∞ ≤ ∥UV⊤∥∞ and ∥PT∆k∥∞ ≤ 1
2∥PT∆k−1∥∞,

with probability at least 1− k02(n1n2)
1−β under the

condition Eq. (4). Similarly, with Eq. ?? in Lemma ??

and using Prop. 1, we obtain for all k ∈ [k0],

∥(R∗
Ωk

− I)(PT∆k−1)∥op ≤ 1
4∥UV⊤∥∞∥PT∆k−1∥∞, with
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probability at least 1− k0(n1 + n2)
1−β under the

condition Eq. (4). Therefore, under the condition

Eq. (4), with probability at least

1− k0(2(n1n2)
1−β + (n1 + n2)

1−β), we have

∥PT⊥Y ∥op =

∥∥∥∥∥PT⊥

k0∑
k=1

R∗
Ωk

PT (∆k−1)

∥∥∥∥∥
op

≤
k0∑
k=1

∥PT⊥R∗
Ωk

PT (∆k−1)∥op

=

k0∑
k=1

∥PT⊥R∗
Ωk

PT (∆k−1)− PT⊥PT∆k−1∥op
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≤
k0∑
k=1

∥(R∗
Ωk

− I)(PT∆k−1)∥op

≤
k0∑
k=1

1

4∥UV⊤∥∞
∥PT∆k−1∥∞

≤
k0∑
k=1

2−k+1 1

4∥UV⊤∥∞
∥PT∆0∥∞

<
1

2
.

By taking the union bound, we have the lemma.

□



Lemma Used in the Proof (Y is a dual
certificate) 62

In the recursion formula, we have used the following

property yielding from the definition of ρop (Def. 5).

Prop.

ρop ≥ ∥UV⊤∥∞

(
sup

Z∈T\{O}:∥Z∥∞≤∥UV⊤∥∞

∥P∗Z− Z∥op
∥Z∥∞

)
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(Proof)

• We have {Z ∈ T : ∥Z∥∞ ≤ ∥UV⊤∥∞} ⊂ {Z ∈ T :

∥Z∥op ≤
√
n1n2∥UV⊤∥op},

• because if ∥Z∥∞ ≤ ∥UV⊤∥∞, then we can obtain

∥Z∥op ≤
√
n1n2∥Z∥∞ ≤ √

n1n2∥UV⊤∥∞ ≤
√
n1n2∥UV⊤∥op.

• (Here, we used ∥Z∥op ≤
√
n1n2∥Z∥∞ and

∥Z∥∞ ≤ ∥Z∥op).
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• Therefore,

ρop =
√
rµ1

(
sup

Z∈T\{O}:∥Z∥op≤
√
n1n2∥UV⊤∥op

∥P∗Z− Z∥op
∥Z∥op

)

=
√
n1n2∥UV⊤∥∞

(
sup

Z∈T\{O}:∥Z∥op≤
√
n1n2∥UV⊤∥op

∥P∗Z− Z∥op
∥Z∥op

)

≥ ∥UV⊤∥∞

(
sup

Z∈T\{O}:∥Z∥∞≤∥UV⊤∥∞

∥P∗Z− Z∥op
1√

n1n2
∥Z∥op

)

≥ ∥UV⊤∥∞

(
sup

Z∈T\{O}:∥Z∥∞≤∥UV⊤∥∞

∥P∗Z− Z∥op
∥Z∥∞

)
.

□
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• Many concentration inequalities are shown for

reference.

• In this talk, only the vector Bernstein inequality will

be used.
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Theorem (Matrix Bernstein inequality [7])

Let {Zk}Lk=1 be independent random matrices with

dimensions d1 × d2. If E(Zk) = O and ∥Zk∥op ≤ R

(a.s.), then define σ2 :=

max

{∥∥∥∑L
k=1 E(Z⊤

k Zk)
∥∥∥
op
,
∥∥∥∑L

k=1 E(ZkZ
⊤
k )
∥∥∥
op

}
.

Then for all t ∈
[
0, σ

2

R

]
,

P


∥∥∥∥∥

L∑
k=1

Zk

∥∥∥∥∥
op

≥ t

 ≤ (d1 + d2) exp

(− 3
8 t

2

σ2

)

holds.
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Theorem (Matrix Bernstein inequality [7])

Therefore, if √
8

3

(
log

d1 + d2
δ

)
σ2 ≤ σ2

R
, (5)

then with probability at least 1− δ,

∥∥∥∥∥
L∑

k=1

Zk

∥∥∥∥∥
op

≤

√
8

3

(
log

d1 + d2
δ

)
σ2

holds.
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Theorem (Vector Bernstein inequality [4])

Let {vk}Lk=1 be independent random vectors in Rd.

Suppose that Evk = o and ∥vk∥ ≤ R (a.s.) and put∑L
k=1 E∥vk∥2 ≤ σ2. Then for all t ∈

[
0, σ

2

R

]
,

P

(∥∥∥∥∥
L∑

k=1

vk

∥∥∥∥∥ ≥ t

)
≤ exp

(
− (t/σ − 1)2

4

)
≤ exp

(
− t2

8σ2
+

1

4

)

holds.



Vector Bernstein inequality (cont.) 70

Theorem (Vector Bernstein inequality [4])

Therefore, given

σ

√
2 + 8 log

1

δ
≤ σ2

R
(6)

with probability at least 1− δ,∥∥∥∥∥
L∑

k=1

vk

∥∥∥∥∥ ≤ σ

√
2 + 8 log

1

δ

holds.
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Theorem (Bernstein’s inequality for scalars [1,

Corollary 2.11])

Let X1, . . . , Xn be independent real-valued random

variables that satisfy |Xi| ≤ R (a.s.), E[Xi] = 0, and∑n
i=1 E[X2

i ] ≤ σ2. Then for all t ∈
[
0, σ

2

R

]
,

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−

3
8 t

2

σ2

)
.

holds.
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Theorem (Bernstein’s inequality for scalars [1,

Corollary 2.11])

Therefore, given

√
8

3
σ2 log

2

δ
≤ σ2

R
, (7)

with probability at least 1− δ,∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≤
√

8

3
σ2 log

2

δ
.

holds.
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From here, we denote P ∗
ij(·) := (P∗(·))ij.

We need to prove the following concentrations.

1. ∥PTP∗PT∆k−1 − PTR∗
Ωk
PT∆k−1∥F ≤

(
1
2
− ρF

)
∥PT∆k−1∥F

2. ∥(R∗
Ωk

− P∗)(PT∆k−1)∥op ≤
(
1
4
− ρop

)
1

∥UV⊤∥∞∥PT∆k−1∥∞

3. ∥(PTR∗
Ωk
PT −PTP∗PT )(PT∆k−1)∥∞ ≤

(
1
2
− ρ∞

)
∥PT∆k−1∥∞

4. ∥PTRΩPBPT − PTPBPT∥op ≤ 1
2
− νB

We will prove only 1. here.
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Lemma (Frobenius norm concentration)

Assume that ρF < 1
2 , and that for some

β > 1/(4 log(n1n2)),

p ≥ min
{
1, pFmin

}
,

is satisfied. Let k ∈ {1, . . . , k0}. Then, given PT∆k−1

that is independent of Ωk, we have, w.p.

≥ 1− e
1
4 (n1n2)

−β,

∥PTP∗PT∆k−1 − PTR∗
Ωk

PT∆k−1∥F ≤
(
1

2
− ρF

)
∥PT∆k−1∥F (8)
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Before moving on to the proof, let us note the following

property of coherence to be used in the proof.

Prop.

∥PT (eif
⊤
j )∥2F ≤ n1 + n2

n1n2
µ0r
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(cont.) 77

Proof.

∥PT (eif
⊤
j )∥2F = ∥PU(eif

⊤
j )∥2F + ∥PV(eif

⊤
j )∥2F − ∥PU(eif

⊤
j )∥2F∥PV(eif

⊤
j )∥2F

≤ ∥PU(eif
⊤
j )∥2F + ∥PV(eif

⊤
j )∥2F

≤ n1 + n2

n1n2
µ0r.
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Note that since (1− p)1/k0 ≤ 1− (1/k0)p, it follows that

q ≥ (1/k0)p. We will repeatedly use this relation in

proving concentration properties.
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(Proof)

• If p = 1, then we have q = 1, therefore Eq. (8) holds.

Thus, from here, we assume 1 ≥ p ≥ pFmin.

• First decompose ∥PTP∗PT∆k−1 − PTR∗
Ωk
PT∆k−1∥F as

∥PTP∗PT∆k−1 − PTR∗
Ωk

PT∆k−1∥F

=

∥∥∥∥∥∥PT

∑
(i,j)

(
1−

ω
(k)
ij

q

)
P ∗
ij(⟨eif⊤

j ,PT∆k−1⟩)eif⊤
j

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∑
(i,j)

(
1−

ω
(k)
ij

q

)
P ∗
ij(⟨eif⊤

j ,PT∆k−1⟩)PT (eif
⊤
j )

∥∥∥∥∥∥
F

=:

∥∥∥∥∥∥
∑
(i,j)

Sij

∥∥∥∥∥∥
F

.
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• From here, we check the conditions for the vector

Bernstein inequality (Theorem 19).

Now it is easy to verify that E[Sij] = O. We also have

∥Sij∥F =

(
1−

ω
(k)
ij

q

)
|P ∗

ij(⟨eif⊤
j ,PT∆k−1⟩)|∥PT (eif

⊤
j )∥F

≤ 1

q
|⟨eif⊤

j ,PT∆k−1⟩|∥PT (eif
⊤
j )∥F

≤ 1

q
∥PT (eif

⊤
j )∥2F∥PT∆k−1∥F

≤ 1

q

n1 + n2

n1n2
µ0r∥PT∆k−1∥F.
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On the other hand,

∑
(i,j)

E∥Sij∥2F =
∑
(i,j)

E

(1− ω
(k)
ij

q

)2
P ∗

ij(⟨eif⊤
j ,PT∆k−1⟩)2∥PT (eif

⊤
j )∥2F

=
1− q

q

∑
(i,j)

P ∗
ij(⟨eif⊤

j ,PT∆k−1⟩)2∥PT (eif
⊤
j )∥2F

≤ 1− q

q

∑
(i,j)

⟨eif⊤
j ,PT∆k−1⟩2∥PT (eif

⊤
j )∥2F

≤ 1− q

q
max
(i,j)

{
∥PT (eif

⊤
j )∥2F

}∑
(i,j)

⟨eif⊤
j ,PT∆k−1⟩2

=
1− q

q
max
(i,j)

∥PT (eif
⊤
j )∥2F∥PT∆k−1∥2F
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≤ 1

q
max
(i,j)

∥PT (eif
⊤
j )∥2F∥PT∆k−1∥2F

=
1

q

(
n1 + n2

n1n2
µ0r

)
∥PT∆k−1∥2F.

Let

R := n1+n2

qn1n2
µ0r∥PT∆k−1∥F, σ2 := n1+n2

qn1n2
µ0r∥PT∆k−1∥2F,

and δ = e
1
4 (n1n2)

−β. Under the condition

q ≥ p

k0
≥ pFmin

k0
=

8µ0r

(1/2− ρF)2
β log(n1n2)

n1 + n2

n1n2
,
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the condition (6) of Theorem 19 is satisfied, because

√(
2 + 8 log

1

δ

)
σ2 =

√
8β log(n1n2)

n1 + n2

qn1n2
µ0r∥PT∆k−1∥F

≤
(
1

2
− ρF

)
∥PT∆k−1∥F ≤ ∥PT∆k−1∥F =

σ2

R
.

Therefore, applying Theorem 19 with d = n1n2, we

obtain ∥∥∥∥∥∥
∑
(i,j)

Sij

∥∥∥∥∥∥
F

≤

√(
2 + 8 log

1

δ

)
σ2 ≤

(
1

2
− ρF

)
∥PT∆k−1∥F
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with probability at least 1− e
1
4 (n1n2)

−β.

□
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For the concentration of

• ∥(R∗
Ωk

− P∗)(PT∆k−1)∥op ≤
(
1
4
− ρop

)
1

∥UV⊤∥∞∥PT∆k−1∥∞

• ∥(PTR∗
Ωk
PT −PTP∗PT )(PT∆k−1)∥∞ ≤

(
1
2
− ρ∞

)
∥PT∆k−1∥∞

• ∥PTRΩPBPT − PTPBPT∥op ≤ 1
2
− νB

please refer to the paper (they are similar but require

different calculations).
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Proof.

The theorem immediately follows from the

combination of Lemma 13, Lemma ??, Lemma 15, and

the union bound.
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